1,651 research outputs found

    Spectrally Effiecient Alamouti Code Structure in Asynchronous Cooperative Systems

    Get PDF
    Cataloged from PDF version of article.A relay communication system with two amplify and forward (AF) relays under flat fading channel conditions is considered where the signals received from the relays are not necessarily time aligned. We propose a new time-reversal (TR)-based scheme providing an Alamouti code structure which needs a smaller overhead in transmitting every pair of data blocks in comparison with the existing schemes and, as a result, increases the transmission rate significantly (as much as 20%) in exchange for a small performance loss. The scheme is particularly useful when the delay between the two relay signals is large, e.g., in typical underwater acoustic (UWA) channels

    Upper bounds on the capacity of deletion channels using channel fragmentation

    Get PDF
    Cataloged from PDF version of article.We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input–output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored

    Achievable Rates for Noisy Channels with Synchronization Errors

    Get PDF
    Cataloged from PDF version of article.We develop several lower bounds on the capacity of binary input symmetric output channels with synchronization errors, which also suffer from other types of impairments such as substitutions, erasures, additive white Gaussian noise (AWGN), etc. More precisely, we show that if a channel suffering from synchronization errors as well as other type of impairments can be decomposed into a cascade of two component channels where the first one is another channel with synchronization errors and the second one is a memoryless channel (with no synchronization errors), a lower bound on the capacity of the original channel in terms of the capacity of the component synchronization error channel can be derived. A primary application of our results is that we can employ any lower bound derived on the capacity of the component synchronization error channel to find lower bounds on the capacity of the (original) noisy channel with synchronization errors. We apply the general ideas to several specific classes of channels such as synchronization error channels with erasures and substitutions, with symmetric q-ary outputs and with AWGN explicitly, and obtain easy-to-compute bounds. We illustrate that, with our approach, it is possible to derive tighter capacity lower bounds compared to the currently available bounds in the literature for certain classes of channels, e.g., deletion/substitution channels and deletion/AWGN channels (for certain signal-to-noise ratio (SNR) ranges). © 2014 IEEE

    Decoding Strategies at the Relay with Physical-Layer Network Coding

    Get PDF
    Cataloged from PDF version of article.A two-way relay channel is considered where two users exchange information via a common relay in two transmission phases using physical-layer network coding (PNC). We consider an optimal decoding strategy at the relay to decode the network coded sequence during the first transmission phase, which is approximately implemented using a list decoding (LD) algorithm. The algorithm jointly decodes the codewords transmitted by the two users and sorts the L most likely pair of sequences in the order of decreasing a-posteriori probabilities, based on which, estimates of the most likely network coded sequences and the decoding results are obtained. Using several examples, it is observed that a lower complexity alternative, that jointly decodes the two transmitted codewords, has a performance similar to the LD based decoding and offers a near-optimal performance in terms of the error rates corresponding to the XOR of the two decoded sequences. To analyze the error rate at the relay, an analytical approximation of the word-error rate using the joint decoding (JD) scheme is evaluated over an AWGN channel using an approach that remains valid for the general case of two users adopting different codebooks and using different power levels. We further extend our study to frequency selective channels where two decoding approaches at the relay are investigated, namely; a trellis based joint channel detector/physical-layer network coded sequence decoder (JCD/PNCD) which is shown to offer a near-optimal performance, and a reduced complexity channel detection based on a linear receiver with minimum mean squared error (MMSE) criterion which is particularly useful where the number of channel taps is large

    Multi-Input Multi-Output Deletion Channel

    Get PDF
    Cataloged from PDF version of article.We describe a new channel model suitable in certain applications, namely the multi-input multi-output (MIMO) deletion channel. This channel models the scenarios where multiple transmitters and receivers suffering from synchronization errors are employed. We then consider a coding scheme over such channels based on a serial concatenation of a low-density parity check (LDPC) code, a marker code and a layered space-time code. We design two detectors operating at the bit level which jointly achieve synchronization for the deletion channel (with the help of the marker code) and detection for the MIMO channel. Utilizing the proposed detector together with an LDPC code with powerful error-correction capabilities, we demonstrate that reliable transmission over a MIMO deletion channel is feasible

    Achieving Delay Diversity in Asynchronous Underwater Acoustic (UWA) Cooperative Communication Systems

    Get PDF
    Cataloged from PDF version of article.In cooperative UWA systems, due to the low speed of sound, a node can experience significant time delays among the signals received from geographically separated nodes. One way to combat the asynchronism issues is to employ orthogonal frequency division multiplexing (OFDM)-based transmissions at the source node by preceding every OFDM block with an extremely long cyclic prefix (CP) which reduces the transmission rates dramatically. One may increase the OFDM block length accordingly to compensate for the rate loss which also degrades the performance due to the significantly time-varying nature of UWA channels. In this paper, we develop a new OFDM-based scheme to combat the asynchronism problem in cooperative UWA systems without adding a long CP (in the order of the long relative delays) at the transmitter. By adding a much more manageable (short) CP at the source, we obtain a delay diversity structure at the destination for effective processing and exploitation of spatial diversity by utilizing a low complexity Viterbi decoder at the destination, e.g., for a binary phase shift keying (BPSK) modulated system, we need a two-state Viterbi decoder. We provide pairwise error probability (PEP) analysis of the system for both time-invariant and block fading channels showing that the system achieves full spatial diversity. We find through extensive simulations that the proposed scheme offers a significantly improved error rate performance for time-varying channels (typical in UWA communications) compared to the existing approaches

    Capacity Bounds and Concatenated Codes Over Segmented Deletion Channels

    Get PDF
    Cataloged from PDF version of article.We develop an information theoretic characterization and a practical coding approach for segmented deletion channels. Compared to channels with independent and identically distributed (i.i.d.) deletions, where each bit is independently deleted with an equal probability, the segmentation assumption imposes certain constraints, i.e., in a block of bits of a certain length, only a limited number of deletions are allowed to occur. This channel model has recently been proposed and motivated by the fact that for practical systems, when a deletion error occurs, it is more likely that the next one will not appear very soon. We first argue that such channels are information stable, hence their channel capacity exists. Then, we introduce several upper and lower bounds with two different methods in an attempt to understand the channel capacity behavior. The first scheme utilizes certain information provided to the transmitter and/or receiver while the second one explores the asymptotic behavior of the bounds when the average bit deletion rate is small. In the second part of the paper, we consider a practical channel coding approach over a segmented deletion channel. Specifically, we utilize outer LDPC codes concatenated with inner marker codes, and develop suitable channel detection algorithms for this scenario. Different maximum-a-posteriori (MAP) based channel synchronization algorithms operating at the bit and symbol levels are introduced, and specific LDPC code designs are explored. Simulation results clearly indicate the advantages of the proposed approach. In particular, for the entire range of deletion probabilities less than unity, our scheme offers a significantly larger transmission rate compared to the other existing solutions in the literature

    Історія створення музею археології Волинського державного університету імені Лесі Українки

    Get PDF
    Purpose: This study investigated the comprehension of counterfactual conditionals in monolingual Turkish children with specific language impairment (SLI) and typically developing (TD) children. Comprehending counterfactuals requires a well-developed cognitive system (Beck, Riggs, & Gorniak, 2009). Children with SLI have impaired cognitive functioning (Im Bolter, Johnston, & Pascaul-Leone, 2006) and this impacts on their ability to comprehend counterfactuals. Method: The sample consisted of 13 children with SLI who were matched on age and nonverbal IQ with 13 TD children (mean age 6;9 [years; months] for both groups). Each group completed a sentence comprehension and repetition task with three sentence conditions: nonconditional, factual and counterfactual. Nonconditionals do not have if embedding whereas factual and counterfactual conditionals are morphosyntactically equivalent if-clauses, but only the latter is cognitively complex. Results: Conditionals were more difficult to comprehend than nonconditionals for both groups. Counterfactuals were more difficult to comprehend than the morphosyntactically equivalent factual counterparts for the SLI group. There was no discrepancy between the groups for repetition of counterfactuals and factuals. Conclusions: Children with SLI have difficulty processing counterfactuals due to morphosyntactic complexity (if-embedding) and the cognitive processes involved in comprehending counterfactuals. This indicates that cognitive complexity adds to sentence comprehension deficits in SLI

    Landslide susceptibility mapping of Cekmece area (Istanbul, Turkey) by conditional probability

    Get PDF
    International audienceAs a result of industrialization, throughout the world, the cities have been growing rapidly for the last century. One typical example of these growing cities is Istanbul. Today, the population of Istanbul is over 10 millions. Depending on this rapid urbanization, new suitable areas for settlements and engineering structures are necessary. For this reason, the Cekmece area, west of the Istanbul metropolitan area, is selected as the study area, because the landslides are frequent in this area. The purpose of the present study is to produce landslide susceptibility map of the selected area by conditional probability approach. For this purpose, a landslide database was constructed by both air ? photography and field studies. 19.2% of the selected study area is covered by landslides. Mainly, the landslides described in the area are generally located in the lithologies including the permeable sandstone layers and impermeable layers such as claystone, siltstone and mudstone layers. When considering this finding, it is possible to say that one of the main conditioning factors of the landslides in the study area is lithology. In addition to lithology, many landslide conditioning factors are considered during the landslide susceptibility analyses. As a result of the analyses, the class of 5?10° of slope, the class of 180?225 of aspect, the class of 25?50 of altitude, Danisment formation of the lithological units, the slope units of geomorphology, the class of 800?1000 m of distance from faults (DFF), the class of 75?100 m of distance from drainage (DFD) pattern, the class of 0?10m of distance from roads (DFR) and the class of low or impermeable unit of relative permeability map have the higher probability values than the other classes. When compared with the produced landslide susceptibility map, most of the landslides identified in the study area are found to be located in the most (54%) and moderate (40%) susceptible zones. This assessment is also supported by the performance analysis applied at end of the study. As a consequence, the landslide susceptibility map produced herein has a valuable tool for the planning purposes

    Design of LDPC Codes for Two-Way Relay Systems with Physical-Layer Network Coding

    Get PDF
    Cataloged from PDF version of article.This letter presents low-density parity-check (LDPC) code design for two-way relay (TWR) systems employing physical-layer network coding (PLNC). We focus on relay decoding, and propose an empirical density evolution method for estimating the decoding threshold of the LDPC code ensemble. We utilize the proposed method in conjunction with a random walk optimization procedure to obtain good LDPC code degree distributions. Numerical results demonstrate that the specifically designed LDPC codes can attain improvements of about 0.3 dB over off-the-shelf LDPC codes (designed for point-to-point additive white Gaussian noise channels), i.e., it is new code designs are essential to optimize the performance of TWR systems
    corecore