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Upper Bounds on the Capacity of Deletion
Channels Using Channel Fragmentation

Mojtaba Rahmati and Tolga M. Duman, Fellow, IEEE

Abstract— We study memoryless channels with synchroniza-
tion errors as defined by a stochastic channel matrix allowing for
symbol drop-outs or symbol insertions with particular emphasis
on the binary and non-binary deletion channels. We offer
a different look at these channels by considering equivalent
models by fragmenting the input sequence where different
subsequences travel through different channels. The resulting
output symbols are combined appropriately to come up with an
equivalent input–output representation of the original channel
which allows for derivation of new upper bounds on the channel
capacity. We consider both random and deterministic types
of fragmentation processes applied to binary and nonbinary
deletion channels. With two specific applications of this idea,
a random fragmentation applied to a binary deletion channel
and a deterministic fragmentation process applied to a nonbinary
deletion channel, we prove certain inequality relations among the
capacities of the original channels and those of the introduced
subchannels. The resulting inequalities prove useful in deriving
tighter capacity upper bounds for: 1) independent identically
distributed (i.i.d.) deletion channels when the deletion probability
exceeds 0.65 and 2) nonbinary deletion channels. Some extensions
of these results, for instance, to the case of deletion/substitution
channels are also explored.

Index Terms— Binary deletion channel, non-binary deletion
channel, deletion/substitution channel, channel capacity, capacity
upper bounds.

I. INTRODUCTION

CHANNELS with synchronization errors can be modeled
using symbol drop-outs and/or symbol insertions as well

as random errors. There are many different models adopted
in the literature to describe the resulting channels in dif-
ferent applications. Among them, a relatively general model
is employed by Dobrushin [1] where memoryless channels
with synchronization errors are described by a channel matrix
allowing for the channel outputs to be of different lengths for
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different uses of the channel. As proved in the same paper, for
such channels, information stability holds and Shannon capac-
ity exists. However, the determination of the capacity remains
elusive as the mutual information term to be maximized does
not admit a single letter or finite letter form.

In the existing literature, several specific instances of this
model are more widely studied. For instance, by a proper
selection of the stochastic channel transition matrix, one
obtains the i.i.d. deletion channel which represents one of
the simplest models allowing for symbol drop-outs. In this
paper, we consider the i.i.d. deletion channel model for both
binary and non-binary input cases. In an i.i.d. deletion channel,
the transmitted symbols are either received correctly and in
the right order or are deleted from the transmitted sequence
altogether with a certain probability d independent of each
other. Neither the receiver nor the transmitter knows the
positions of the deleted symbols. Despite the simplicity of
the model, the capacity for this channel is still unknown and
only a few upper and lower bounds are available [2]–[6].

Another special case of the general model by Dobrushin
is the Gallager model allowing for insertions, deletions and
substitution errors in a binary input channel in which every
transmitted bit is either deleted with probability d , replaced by
two random bits with probability i , flipped with probability f
or received correctly with probability 1−d−i − f . With i = 0,
the Gallager model boils down to the deletion/substitution
channel model which is also considered in this paper. Another
look at the deletion/substitution channel can be as a series
concatenation of two independent channels such that the first
one is a deletion-only channel with deletion probability of d
and the second one is binary symmetric channel (BSC) with
cross error probability of s = f

1−d . There are some capacity
upper and lower bounds for the Gallager’s insertion/deletion
channel model in the literature, see [7], [8].

In this paper, for both binary and non-binary input deletion
channels, it is shown that if we define a new channel in
which the input sequence is fragmented into subsequences
of smaller lengths where the resulting subsequences travel
through independent i.i.d. deletion channels and the surviving
symbols of the deletion channels are combined without
changing their order in the original input sequence, then
the resulting channel is an i.i.d. deletion channel with
parameters which depend on the parameters of the considered
subchannels. Furthermore, this new formulation provides
a means of relating the capacities of the original channels
and those of the subchannels considered through certain
inequalities, thereby allowing us to obtain tighter capacity
upper bounds for certain synchronization error channels.
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For the binary input deletion channel, we prove that the
capacity of an i.i.d. deletion channel with deletion probability
d can be upper bounded in terms of the capacities of
i.i.d. deletion channels with deletion probabilities d1 and d2
where d is a weighted average of d1 and d2, i.e.,
d = λd1+(1−λ)d2 for λ ∈ [0, 1]. The proof relies on a simple
observation that the deletion channel with deletion probability
d can be considered as a “parallel concatenation” of two
independent deletion channels with deletion probabilities
d1 and d2 where each bit is either transmitted over the
first channel with probability λ or the second channel with
probability 1 − λ independently of each other. We formalize
the equivalence in Section III. Thanks to the derived inequality
relation among the deletion channel capacities, we are able to
improve upon the existing upper bounds on the capacity of the
binary deletion channel for d ≥ 0.65 [5]. The improvement
comes from the fact that the currently known best upper
bounds are not convex for some range of deletion probabilities.
More precisely, our result allows us to convexify the existing
deletion channel capacity upper bound for d ≥ 0.65, leading
to a significant improvement for a wide range of deletion
probabilities. More precisely, we are able to prove that
for 0 ≤ λ ≤ 1, C2(λd + 1 − λ) ≤ λC2(d) (where C2(d)
stands for the binary deletion channel capacity), resulting in
C2(d) ≤ 0.4143(1−d) for d ≥ 0.65. This result is also a broad
generalization of the one obtained in [9] which only holds
asymptotically as d → 1. We also demonstrate that a similar
improvement is possible for the case of deletion/substitution
channels. As an example, we can prove that for substitution
probability of s = 0.03, an improved capacity upper bound is
obtained for d ≥ 0.6 over the best existing result given in [7].

For the non-binary case, we derive the first non-trivial
capacity upper bound for the i.i.d. deletion channel, and
reduce the gap with the existing achievable rates. To derive
the results we first prove an inequality between the capacity
of a 2K -ary deletion channel with deletion probability d ,
denoted by C2K (d), and the capacity of the binary deletion
channel with the same deletion probability, C2(d), that is,
C2K (d) ≤ C2(d) + (1 − d) log(K ). As a result, any upper
bound on the binary deletion channel capacity can be
used to derive an upper bound on the 2K -ary deletion
channel capacity. Therefore by employing existing upper
bounds on the capacity of the binary deletion channel,
we obtain upper bounds on the capacity of the 2K -ary
deletion channel. For example, using the result on the
binary deletion channel stated in the previous paragraph, we
obtain C2K (d) ≤ (log(K ) + 0.4143)(1 − d) for d ≥ 0.65.
Furthermore, we illustrate via examples the use of the new
bounds and discuss their asymptotic behavior as d → 0.

The paper is organized as follows. In Section II, we first
provide the model for non-binary deletion channels, and then
review the previous work on the capacity of both binary and
non-binary input deletion channels. In Section III, we prove
a result on the binary deletion channel capacity which relates
the capacity of the three different binary deletion channels
through an inequality, and generalize it to the case of dele-
tion/substitution channels. We provide our new upper bound on
the capacity of the non-binary deletion channels in Section IV.

In Section V, we present tighter upper bounds on the capacity
of the deletion and deletion/substitution channels based on
previously known best upper bounds (for binary channels),
and comment on the limit of the capacity as the deletion
probability approaches unity. Furthermore, we provide several
implications of the result for the non-binary case where we
compare the resulting capacity upper bounds with the existing
capacity upper and lower bounds, and provide a discussion
of the non-binary input channel capacity behavior as the
deletion probability approaches zero. We conclude the paper
in Section VI.

II. PRELIMINARIES

In this section, we first introduce the general model for
i.i.d. deletion channels, and then review the existing work on
the deletion channel capacity in the literature.

A. Channel Model

An i.i.d. Q-ary input deletion channel with input alphabet
X = {1, . . . , Q} is considered in which every transmitted
symbol is either randomly deleted with probability d or
received correctly with probability 1 − d while there is no
information about the values or the positions of the lost
symbols at the transmitter or at the receiver. In transmission of
N symbols through the channel, the input sequence is denoted
by X = (x1, . . . , xN ) in which xn ∈ X and X ∈ X N , and the
output sequence is denoted by Y = (y1, . . . , yM ) in which M
is a binomial random variable with parameters N and d (due to
the characteristics of the i.i.d. deletion channel). With Q = 2,
we obtain the usual binary input i.i.d. deletion channel.

B. Brief Literature Review

Capacity of binary deletion channels has received significant
attention in the existing literature, see [10] and references
therein. Examples of the deletion channel capacity lower
bounds include [4], [11], [12]. Gallager [11] provided the
first lower bound on the transmission capacity of the channels
with random insertion, deletion and substitution errors which
provides a lower bound on the binary deletion channel capacity
as well. The tightest lower bound on the binary deletion
channel capacity is provided in [4] where the information
capacity of the binary deletion channel is directly lower
bounded by considering input sequences as alternating blocks
of zeros and ones (runs) and the length of the runs L as
i.i.d. random variables following a particular distribution over
positive integers with a finite expectation and finite entropy.

There are also several upper bounds on the binary deletion
channel capacity, see [5], [13]. In [13] a genie-aided channel
is considered in which the receiver is provided with the side
information about the completely deleted runs. For example, if
“110001” is transmitted but “111” is received (i.e., the entire
run of “000” is lost), the genie aided channel considers the
received signal as “11 − 1”, i.e., the position of the complete
lost run is marked by a different symbol. An upper bound
on the capacity per unit cost of the genie-aided channel is
computed by running the Blahut-Arimoto algorithm (BAA).
Fertonani and Duman [5] take a similar approach, but consider
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Fig. 1. Illustration of the new channel C′.

different genie-aided channels, along with the BAA, and obtain
tighter upper bounds on the binary deletion channel capacity.

Despite the extensive work on binary deletion channels,
the case of non-binary deletion channels has not received
significant attention so far. To the best of our knowledge, the
only non-trivial lower bounds on the capacity of the non-binary
deletion channels are provided in [6] where two different
bounds are derived. More precisely, the achievable rates for
Q-ary input deletion channels are computed for i.i.d. and
Markovian codebooks by considering a simple decoder which
decides in favor of a sequence if the received sequence is a
subsequence of only one transmitted sequence. The derived
achievable rates are given by

CQ ≥ log

(
Q

Q − 1

)
+ (1 − d) log(Q − 1) − Hb(d), (1)

by considering i.i.d. codebooks, where Hb(d) = −d log(d) −
(1 − d) log(1 − d), and

CQ ≥ sup
γ>0, 0<p<1

[−(1−d) log ((1−q)A+q B)−γ log(e)] (2)

by considering Markovian codebooks, with d being the
deletion probability, q = 1

Q

(
1+ (1−d)(Q−1)(Qp−1)

Q−1−d(Qp−1)

)
,

A = e−γ (1−p)

(Q−1)(1−e−γ (1− 1−p
Q−1 ))

and B = e−γ ((1 − p)A+ p).

Non-binary input alphabet channels with synchronization
errors are also considered in [14] where the capacity of mem-
oryless synchronization error channels in the presence of noise
and the capacity of channels with weak synchronization errors
(i.e., the transmitter and receiver are partly synchronized)
have been studied. The main focus of the work in [14] is
on the asymptotic behavior of the channel capacity for large
values of Q.

III. AN IMPROVED UPPER BOUND ON THE CAPACITY

OF BINARY DELETION CHANNELS

As stated in the introduction section, the main idea explored
in this paper is the fragmentation of the input and output
sequences of a deletion channel in an effort to come up
with alternate representations of the channel input and output
processes. We do so in such a way that the alternate repre-
sentations are helpful in the channel capacity study. As a first
fragmentation approach, in this section, we consider a “ran-
dom” fragmentation for the binary input i.i.d. deletion channel.
That is, we show a simple result that the parallel concatenation
of two different independent deletion channels with deletion

probabilities d1 and d2, in which every input bit is either
transmitted over the first channel with probability of λ or over
the second one with probability of λ̄ = 1−λ, independently of
each other, and the surviving output bits are combined without
changing the order, is nothing but another deletion channel
with deletion probability of d = λd1 + λ̄d2. This formulation
allows us to provide an upper bound on the concatenated
deletion channel capacity C2(d) in terms of a weighted average
of C2(d1), C2(d2) and the parameters of the three channels.
Furthermore, we present a simple proof for the special case
with d2 = 0, i.e., C2(λd1 + λ̄) ≤ λC2(d1), and generalize
the result to the case of binary input deletion/substitution
channel and randomized parallel concatenation of more than
two deletion channels.

A. A Novel Upper Bound on C2(d)

The following theorem states our result on the binary
deletion channel capacity whose proof hinges on a simple
observation.

Theorem 1: Let C2(d) denote the capacity of the i.i.d.
binary deletion channel with deletion probability d, λ ∈ [0, 1]
and d = λd1 + λ̄d2, then by defining d̄ = 1 − d, we have

C2(d) ≤ λC2(d1) + λ̄C2(d2) + d̄ log(d̄)

−λd̄1 log(λd̄1) − λ̄d̄2 log(λ̄d̄2). (3)

Proof: Let us consider two different deletion channels,
C1 and C2, with deletion probabilities d1 and d2, input
sequences of bits X1 and X2, and output sequences of bits
Y 1 and Y 2, respectively. Denote their Shannon capacities by
C2(d1) and C2(d2), respectively. Given a specific λ ∈ [0, 1],
define a new binary input channel C ′ (shown in Fig. 1) with
input sequence of bits X and output sequence of bits Y as
follows: each channel input symbol is transmitted through
C1 with probability λ, and through C2 with probability λ̄,
independently of each other. Neither the transmitter nor the
receiver knows the specific realization of the “individual
channel selection events,” i.e., they do not know which
specific subchannel a symbol is transmitted through, and
which specific subchannel each output symbol is received
from. Lemmas 1 and 2 (given below) demonstrate that 1) the
new channel is a new i.i.d. deletion channel with deletion
probability d = λd1 + λ̄d2, 2) if appropriate side information
be provided for the transmitter and the receiver then the
capacity of the genie-aided channel is upper bounded by

λC2(d1) + λ̄C2(d2) + d̄ log(d̄)−λd̄1 log(λd̄1) − λ̄d̄2 log(λ̄d̄2).
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Combining these two results, the proof of the theorem follows
easily by noting that the capacity of the new channel C ′
cannot decrease with side information.

The following two lemmas are employed in the proof of the
above theorem.

Lemma 1: C ′ as defined in the proof of Theorem 1 is nothing
but a deletion channel with deletion probability d = λd1+λ̄d2.

Proof: For each use of the channel C ′, for any input sym-
bol x ∈ X and channel output y ∈ Y , the transition probability
is given by P{C1 is used}d1 + P{C2 is used}d2 = λd1 + λ̄d2.
Noting that the subchannels are memoryless and the channel
selection events are independent of each other, this transition
matrix precisely defines a deletion channel with deletion
probability d = λd1 + λ̄d2.

Lemma 2: The capacity of the channel C ′ as defined in the
proof of Theorem 1 is upper bounded by

λC2(d1) + λ̄C2(d2) + d̄ log(d̄)−λd̄1 log(λd̄1) − λ̄d̄2 log(λ̄d̄2).

Proof: We first define a new genie-aided channel which
is obtained by providing the transmitter and the receiver
of the channel C ′ with appropriate side information, then
derive an upper bound on the capacity of the genie-aided
channel which is also an upper bound on the capacity of the
channel C ′. More precisely, we provide the transmitter with
side information on which channel is being used for each
transmitted symbol (X = X1 X2), and the receiver with side
information on which channel the received symbol comes from
(Y = Y 1Y 2), and reveal the side information on the fragmen-
tation information, i.e., random process Fy , to the receiver
such that by knowing Fy , Y 1 and Y 2, one can retrieve Y.
Fy is defined as an M-tuple Fy = ( fy[1], . . . , fy[M]),
where M denotes the length of the received sequence Y,
i.e., M = |Y |, and fy[i ] ∈ {1, 2} denotes the index
of the channel the i -th received bit is coming from. We
also define Fx which determines the fragmentation process
from the random process X to X1 and X2 as an N-tuple
Fx = ( fx [1], . . . , fx [N]), where fx [i ] ∈ {1, 2} denotes the
index of the channel the i -th bits is going through.

Since X → (X1, X2, Fx ) → (Y 1, Y 2, Fy) → Y form a
Markov chain, we can write

I (X; Y) ≤ I (X1, X2, Fx ; Y 1, Y 2, F y)

= I1 + I2 + I3, (4)

where I1 = I (X1, X2, Fx ; Y 1), I2 = I (X1, X2, Fx ; Y 2|Y 1)
and I3 = I (X1, X2, Fx ; Fy|Y 1, Y 2). For I1, we have

I1 = I (X1; Y 1) + I (X2, Fx ; Y 1|X1)

= I (X1; Y 1), (5)

where we used the fact that P(Y 1|X1, X2, Fx ) = P(Y 1|X1),
i.e., Y 1 is independent of X2 and Fx conditioned on X1.
Furthermore, by using the facts that P(Y 2|X2, Y 1) =
P(Y 2|X2) and P(Y 2|X1, X2, Fx , Y 1) = P(Y 2|X2), we
obtain

I2 = I (X2; Y 2|Y 1) + I (X1, Fx ; Y 2|Y 1, X2)

= H (Y2|Y 1) − H (Y2|X2)

≤ I (X2; Y 2). (6)

We are not able to derive the exact value of I3, therefore
we resort to an upper bound which results in an upper bound
on I (X, Y ). For I3, if we define Ni = |Xi | and Mi = |Yi | as
the length of the transmitted and received sequences form the
i -th channel, respectively, then we can write

I3 = H (Fy |Y 1, Y 2) − H (Fy |Y 1, Y 2, X1, X2, Fx)

≤ H (Fy |Y 1, Y 2)

= H (Fy |M1, M2). (7)

For fixed M1 and M2, there are
(M1+M2

M2

)
possibilities for Fy =

( fy[1], . . . , fy[M1]). Therefore, we obtain (see Appendix A)

H (Fy |M1 = M1, M2 = M2) ≤ log

((
M1 + M2

M2

))

≤ (M1 + M2) log(M1 + M2)

−M1 log(M1) − M2 log(M2). (8)

Furthermore, since g([M1, M2]) = (M1 + M2)
log (M1 + M2) − M1 log(M1) − M2 log(M2) is a concave
function of [M1, M2] (see Appendix B), by applying Jensen’s
inequality, we obtain

I3 ≤ EM1,M2

{
H (Fy |M1, M2)

}

≤ E{M1 + M2} log (E{M1 + M2})
−E{M1} log (E{M1}) − E{M2} log (E{M2})

Due to the structure of the channel C ′, M i is binomially dis-
tributed, i.e., P(M i = Mi ) = ( N

Mi

)
(λi d̄i )

Mi (λ̄i + λi di )
N−Mi ,

and as a result E{M i } = Nλi (1 − di). Therefore, we arrive at

I3 ≤ N(λd̄1 + λ̄d̄2) log(λd̄1 + λ̄d̄2)

−Nλd̄1 log(λd̄1) − N λ̄d̄2 log(λ̄d̄2). (9)

On the other hand, for I (X i ; Y i ) (i ∈ {1, 2}), we have (see
Appendix C)

I (X i ; Y i ) ≤ E{N i }C2(di ) + 2 log(N + 1)

= λi NC2(di) + 2 log(N + 1). (10)

Finally, by substituting (10), (9), (6) and (5) into (4), we obtain

I (X; Y) ≤ NλC2(d1) + N λ̄C2(d2) + 4 log(N + 1)

+Nd̄ log(d̄) − Nλd̄1 log(λd̄1) − N λ̄d̄2 log(λ̄d̄2).

By dividing both sides of the above inequality by N , letting
N go to infinity, and noting that the inequality is valid for any
input distribution P(X), the proof follows.

B. Special Case With d2 = 1

In this subsection, we note that for the special case
of d2 = 1, the derived upper bound (3) results in
C2(λd1 + λ̄) ≤ λC2(d1). This expression provides a
tighter upper bound on the capacity of the binary deletion
channel for deletion probabilities larger than 0.65 compared
to the existing ones in the literature if d1 = 0.65 is used
and the capacity upper bound for this value of the deletion
probability is substituted from [5].

We digress here to point out that to prove the special
case C2(λd1 + λ̄) ≤ λC2(d1), there is no need for the
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entire proof given in Lemma 2. More precisely, when C2
is a pure deletion channel, X → X1 → Y 1 → Y form a
Markov chain (Y = Y 1), therefore we can write

I (X; Y) ≤ I (X1; Y 1)

≤ λNC2(d1) + log(λ1 N + 1) + log(N + 1), (11)

where the last inequality holds due to the result in Appendix C.
Furthermore, by dividing both sides of the above inequality
by N , letting N go to infinity, and the fact that the inequality
is valid for any input distribution P(X), we arrive at
C2(λd1 + λ̄) ≤ λC2(d1).

Another observation from the result C2(λd1 + λ̄) ≤ λC2(d1)
is that by series concatenation of two independent deletion
channels with deletion probabilities d1 and λ̄, we also arrive
at a deletion channel with deletion probability of d = λd1 + λ̄.
Therefore we can say that the capacity of the series concate-
nation of two independent deletion channels can be upper
bounded in terms of the capacity of one of them and the
parameters of the other.

C. Generalization to the Case of Deletion/Substitution
Channels

Deletion/substitution channel is a special case of the
Gallager channel model without any insertions. In a dele-
tion/substitution channel with parameters (d , f ), any trans-
mitted bit is either deleted with probability of d or flipped
with probability of f or received correctly with probability of
1 − d − f . The position of the deleted and flipped bits are
not known either at the transmitter or the receiver. It is easy
to show that the result of Theorem 1 can also be generalized
to the deletion/substitution channel as given in the following
corollary.

Corollary 1: Let C2(d, f ) denote the capacity of the dele-
tion/substitution channel with deletion probability d and flip-
ping probability f, λ ∈ [0, 1], d = λd1 + λ̄d2 and f =
λ f1 + λ̄ f2, then we have

C2(d, f ) ≤ λC2(d1, f1) + λ̄C2(d2, f2) + d̄ log(d̄)

−λd̄1 log(λd̄1) − λ̄d̄2 log(λ̄d̄2). (12)

Proof: The proof of Lemma 1 simply holds if we
consider C1 in Fig. 1 as a deletion/substitution channel with
parameters (d1, f1) and C2 as another deletion/substitution
channel with parameters (d2, f2). Then C also becomes a
deletion/substitution channel with parameters (λd1 + λ̄d2,
λ f1+λ̄ f2). Furthermore, replacing the deletion channel Ci with
deletion probability di with a deletion/substitution channel
with parameters (di , fi ) does not change the distribution of
N i and M i . Therefore, the proof of Lemma 2 holds for the
deletion/substitution channel as well.

One can also consider a deletion/substitution channel with
parameters (d, f ) as a series concatenation of two indepen-
dent channels. The first channel is a deletion only channel
with deletion probability d and the second one is a binary
symmetric channel (BSC) with crossover probability s = f

1−d
(1 − d − f ≤ 1 and, if d = 1 then s = 0). Therefore, we
can represent any deletion/substitution channel with another
set of parameters d and s as well, and denote the capacity by

Cs(d, s) with the understanding that Cs(d, s) = C2(d, f ) =
C2(d, (1 − d)s). With this new representation, for d2 = 1 and
f2 = 0, we can write

Cs(λd1 + λ̄, s) ≤ λCs(d1, s). (13)

Similar to the case of deletion-only channels, this expression
provides a tighter upper bound on the deletion-substitution
channel capacity compared to the existing bounds in the
literature for a wide range of channel parameters (which is
discussed further in Section V).

D. Parallel Concatenation of More Than Two Channels

So far, we considered the parallel concatenation of two inde-
pendent deletion channels which is useful for improving upon
the existing upper bounds. However, we can also consider the
parallel concatenation of more than two deletion channels by
considering a different “random” fragmentation process. If we
define the deletion channel C as a parallel concatenation of
P independent deletion channels Cp with deletion probability
dp (p = {1, . . . , P}) where each input bit is transmitted with
probability λp over Cp , and modify the definition of Fy such
that fy[i ] ∈ {1, . . . , P} denotes the index of the channel the
i -th bit is coming from, then for d = ∑P

p=1 λpdp , we have

C2(d)≤
P∑

p=1

λpC2(dp)+d̄ log(d̄)−
P∑

p=1

λpd̄p log(λpd̄p), (14)

where
∑P

p=1 λp = 1. Note, however, that the above inequality
does not result in any tighter upper bounds on the deletion
channel capacity than the one obtained by considering the par-
allel concatenation of only two independent deletion channels.

IV. NON-BINARY DELETION CHANNELS

We now switch gears and consider non-binary deletion
channels. The main objective is to explore a different (deter-
ministic) input-output fragmentation process and use it to
obtain the first non-trivial capacity upper bounds for non-
binary deletion channels. Before proceeding with the main
result, we provide a discussion on BAA based upper bounds
for non-binary input deletion channels in the following subsec-
tion. Then, the subsequent subsections describe the fragmenta-
tion process under consideration for 2K -ary deletion channel
and study the case of general Q-ary input deletion channels.

A. Discussion on BAA Based Upper Bounds

One approach to derive upper bounds on the Q-ary dele-
tion channel capacity is to modify the numerical approaches
in [5] and [13] in which the decoder (and possibly the encoder)
of the deletion channel is provided with some side information
about the deletion process and the capacity (or an upper
bound on the capacity) of the resulting genie-aided channel
is computed by the Blahut-Arimoto algorithm. Although this
approach is useful for binary input channels (even when
other impairments such as insertions and substitutions are
considered [7]), for the non-binary case, running the BAA for
large values of Q is not computationally feasible. For instance,



RAHMATI AND DUMAN: UPPER BOUNDS ON THE CAPACITY OF DELETION CHANNELS 151

Fig. 2. Fragmentation of the 2K -ary deletion channel into K independent binary input deletion channels.

one of the upper bounds in [5] is obtained by computing the
capacity of the binary deletion channel with finite transmis-
sion length L = 17. Obviously, by increasing the alphabet
size Q, the maximum possible value of L in running the
BAA algorithm decreases. Therefore, to achieve meaningful
upper bounds, L needs to be increased which makes the
numerical computations infeasible.

The main contribution of the present section is that we are
able to relate the capacity of the Q-ary deletion channel to
the capacity of the lower order deletion channels through an
inequality which enables us to upper bound the Q-ary deletion
channel capacity and avoid the computationally prohibitive
BAA directly for the Q-ary deletion channel.

B. A Different Look at the 2K -Ary Deletion Channel

Any 2K -ary input deletion channel with deletion probability
d can be considered as a parallel concatenation of K indepen-
dent binary deletion channels Ck (k ∈ {1, . . . , K }) all with
the same deletion probability d , as shown in Fig. 2, in which
the input symbols 2k − 1 and 2k travel through Ck and the
surviving output symbols of the subchannels are combined
based on the order in which they go through the subchannels.
Xk and Y k denote the input and output sequences of the
k-th channel, respectively, and Nk and Mk denote the length
of Xk and Y k , respectively.

To be able to relate the mutual information between the
input and output sequences of the 2K -ary deletion channel,
I (X; Y), with the mutual information between the input
and output sequences of the considered binary deletion
channels, I (Xk; Y k), we define two new random vectors
Fx = ( fx [1], . . . , fx [N]) and Fy = ( fy[1], . . . , fy[M])
where fx [n] ∈ {1, . . . , K } and fy[m] ∈ {1, . . . , K } denote the
label of the subchannel the n-th input symbol and m-th output
symbol belong to, respectively. Clearly, by knowing X ,
one can determine (X1, . . . , X K , Fx ) and by knowing
(X1, . . . , X K , Fx ) can determine X . The same situation
holds for Y and (Y 1, . . . , Y K , Fy). Therefore, we have

I (X; Y) = I (X1, . . . , X K , Fx ; Y 1, . . . , Y K , F y)

=
K∑

k=1

Ik + IF , (15)

where Ik = I (X1, . . . , X K , Fx ; Y k |Y 1, . . . , Y k−1) and

IF = I (X1, . . . , X K , Fx ; Fy |Y 1, . . . , Y K ). (16)

In Section IV-C, we will derive upper bounds on Ik and IF

which will enable us to relate the non-binary and binary
deletion channels capacities, and will lead to the main result
of the paper.

C. A Novel Upper Bound on C2K(d)

As discussed in Section IV-B, a 2K -ary deletion channel can
be considered as a parallel concatenation of K independent
binary deletion channels. This new look at a 2K -ary deletion
channel enables us to relate the 2K -ary deletion channel
capacity to the binary deletion channel capacity with the same
deletion error probability as given in the following theorem.

Theorem 2: Let C2K (d) denote the capacity of a 2K -ary
i.i.d. deletion channel with deletion probability d, then

C2K (d) ≤ C2(d) + (1 − d) log(K ). (17)

As given in (15), the mutual information I (X; Y) can be
expanded in terms of several other mutual information terms,
Ik for k ∈ {1,. . ., K} and IF . To prove the theorem, we
first derive upper bounds for Ik and IF in the following two
lemmas.

Lemma 3: For any input distribution P(X1, . . . , X K , Fx),
the mutual information Ik given in (15) can be upper
bounded by

Ik ≤ E{Nk}C2(d) + 2 log(N + 1).

Proof: For Ik , since P(Y k|Y 1, . . . , Y k−1, Xk) =
P(Y k |Xk) and P(Y k |X1, . . . , X K , Fx , Y 1, . . . , Y k−1) =
P(Y k |Xk), we can write

Ik = I (Xk; Y k |Y 1, . . . , Y k−1)

+I (X1, . . . , Xk−1, Xk+1, . . . , X K ,

Fx ; Y k |Y 1, . . . , Y k−1, Xk)

= I (Xk; Y k |Y 1, . . . , Y k−1)

= H (Yk|Y 1, . . . , Y k−1) − H (Yk |Y 1, . . . , Y k−1, Xk)

= H (Yk) − I (Y 1, . . . , Y k−1; Y k) − H (Yk |Xk)

≤ I (Xk; Y k). (18)

Furthermore, for I (Xk; Yk), we have (see Appendix C)

I (Xk; Y k) ≤ E{Nk}C2(d) + 2 log (N + 1).

Finally, by substituting the above inequality into (18), the proof
follows.
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Lemma 4: For any input distribution, the mutual
information IF given in (16) can be upper bounded by

IF ≤ N(1 − d) log(K ).

Proof: Using the definition of the mutual information, we
can write

IF = H (Fy |Y 1, . . . , Y K )

−H (Fy|Y 1, . . . , Y K , X1, . . . , X K , Fx)

≤ H (Fy |Y 1, . . . , Y K )

≤ H (Fy |M1, . . . , M K ), (19)

where the last inequality follows since (M1, . . . , M K )
is a function of (Y 1, . . . , Y K ), i.e.,
H (M1, . . . , M K |Y 1, . . . , Y K ) = 0. For fixed mk with∑K

k=1 mk = m, there are
( m

m1,...,mK

)
possibilities for

Fy leading to H (Fy|M1 = m1, . . . , M K = mK ) ≤
log

( m
m1,...,mK

)
. It follows from the inequality (see Appendix A)

log

(
m

m1, . . . , mK

)
≤ m log(m) −

K∑
k=1

mk log(mk), (20)

that H (Fy |M1 = m1, . . . , M K = mK ) ≤ m log(m) −∑K

k=1
mk log(mk). Since, for

∑K
k=1 mk = m,

g([m1, . . . , mk ]) = m log(m) −
K∑

k=1

mk log(mk)

is a concave function of [m1, . . . , mK ] (see Appendix B),
employing the Jensen’s inequality yields

IF ≤
(

K∑
k=1

E{Mk}
)

log

(
K∑

k=1

E{Mk}
)

−
K∑

k=1

E{Mk} log(E{Mk}).

On the other hand, due to the fact that Ck are i.i.d. binary
input deletion channels, we have E{Mk} = Nd̄αk where αk ’s
depend on the input distribution P(X) and

∑K
k=1 αk = 1.

Hence, we obtain

IF ≤ Nd̄

(
log

(
Nd̄

) −
K∑

k=1

αk log
(
Nd̄αk

))

= −Nd̄
K∑

k=1

αk log αk = Nd̄ H (α1, . . . , αK )

≤ Nd̄ log(K ), (21)

which concludes the proof.
Proof of Theorem 2: Substituting the results of Lemmas 3

and 4 into (15), we obtain

I (X; Y) ≤ EN1,...,N K

{
K∑

k=1

Nk

}
C2(d)

+ 2K log(N + 1) + Nd̄ log(K )

= NC2(d) + 2K log(N + 1) + Nd̄ log(K ),

where we have used the fact that
∑K

k=1 Nk = N
independent of the input distribution P(X). Since the above
inequality holds for any input distribution P(X) and any value
of N , we can write

C2K (d) = lim
N→∞ max

P(X)

1

N
I (X; Y)

≤ C2(d) + d̄ log(K ),

which concludes the proof.

D. Generalization of the Result to Q-Ary Input Deletion
Channels

So far, we have focused on 2K -ary input deletion channels
and provided a new upper bound on their capacity in terms
of the binary deletion channel capacity. In this section, we
generalize the results to the Q-ary input deletion channels for
arbitrary values of Q by providing upper bounds on the Q-ary
input deletion channel capacity in terms of the capacity of the
lower order deletion channels, e.g., the capacity of the 5-ary
input deletion channel can be upper bounded in terms of the
capacity of the ternary and binary input deletion channels.

Let us define S = {1, . . . , Q} as the set of input symbols to
the Q-ary input deletion channel. There are different possibil-
ities to fragment the given set S into subsets with smaller

length. For example, there are
(

Q
q1, . . . , qP

)
possibilities

to fragment S into P subsets Sp (p ∈ {1, . . . , P}) where
|Sp| = qp and

∑P
p=1 qp = Q. Similar to the case of 2K -ary

deletion channels, for each possible fragmentation of the input
symbols into P subsets, we can define a Q-ary input channel
as a parallel concatenation of P parallel independent deletion
channels where the symbols of the subset Sp travel through the

p-th deletion channel. Therefore, there are J =
(

Q
q1, . . . , qP

)
possibilities for considering the Q-ary input deletion channel
as a parallel concatenation of P independent deletion channels.

Let us first focus on a specific input distribution P(X)
and a specific fragmentation process, the j th one, for
which the subset Sp, j of length qp represents the set
of input symbols to the deletion channel Cp, j with input
sequence of X p, j and output sequence of Y p, j . When
transmitting N symbols over the new channel, as defined
in Section IV-B, the fragmentation and defragmentation
processes can be represented by Fx = ( fx [1], . . . , fx [N]) and
Fy = ( fy[1], . . . , fy[N]), respectively. Similar to (15),
by defining Ip, j = I (X1, j , . . . , X p, j , Fx ; Y p, j |Y 1, j , . . . ,
Y p−1, j ) and IF as in (16), we can write

I (X; Y) =
P∑

p=1

Ip, j + IF . (22)

For Ip, j , by generalizing the result of Lemma 3 to the new
defined fragmented channel, we obtain

Ip, j ≤ E{N p, j }Cqp(d) + 2 log(N + 1), (23)

where Np, j denotes the length of the input sequence to the
channel Cp, j and E{N p, j } depends on the input distribu-
tion P(X). Obviously, the result of Lemma 4 also holds for
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the newly defined channel, i.e.,

IF ≤ Nd̄ log(P). (24)

Substituting (23) and (24) into (22), for a given input distrib-
ution P(X) and a specific j , we obtain

I (X; Y) ≤
P∑

p=1

E{N p, j }Cqp(d) + 2P log(N + 1)

+ Nd̄ log(P). (25)

Since the above inequality is valid for any possible fragmen-
tation process, i.e., all j , by averaging the right hand side
of the inequality for all possible fragmentation processes, we
arrive at

I (X; Y) ≤ 1

J

P∑
p=1

⎛
⎝ J∑

j=1

E{N p, j }
⎞
⎠ Cqp(d)

+Nd̄ log(P) + 2P log(N + 1). (26)

Let us consider a specific input symbol s ∈ {1, . . . , Q}
and define Ns (X) as the number of times s occurs in
the input sequence X (

∑
s∈S Ns(X) = N for any pos-

sible input sequence X). Furthermore, among all possi-

ble J =
(

Q
q1, . . . , qP

)
fragmentation processes, there are(

Q − 1
q1, . . . , qp − 1, . . . , qP

)
possible fragmentations for which

s belongs to the p-th subset of length qp. Therefore, we can
write

1

J

J∑
j=1

E{N p, j } = 1

J
E

⎧⎨
⎩

J∑
j=1

∑
s∈Sp, j

Ns(X)

⎫⎬
⎭

= 1

J

(
Q − 1

q1, . . . , qp − 1, . . . , qP

)
E

{∑
s∈S

Ns (X)

}

= N

( Q−1
q1,...,qp−1,...,qP

)
J

= N
qp

Q
(27)

which is independent of the specific channel input (hence it is
independent of the input distribution used). Substituting this
result into (26), we obtain

I (X; Y) ≤ N
P∑

p=1

qp

Q
Cqp(d) + 2P log(N + 1) + Nd̄ log(P).

Since the above inequality holds for any input distribution
P(X), it holds for the capacity achieving input distribution as
well. Therefore, for the capacity achieving input distribution,
by dividing both sides of the above expression by N and letting
N go to infinity, we arrive at

CQ(d) ≤
P∑

p=1

qp

Q
Cqp (d) + d̄ log(P). (28)

As an example, for the 2K + 1−ary input deletion chan-
nel, by considering parallel concatenation of K − 1 binary

Fig. 3. Upper bounds on the i.i.d. deletion channel capacity.

deletion channels and a ternary input deletion channel,
we obtain

C2K+1(d) ≤ 2(K − 1)

2K + 1
C2(d) + 3

2K + 1
C3(d) + d̄ log(K ).

(29)

The newly derived capacity upper bound (28) provides some
upper bounds on CQ(d) for arbitrary values of Q in terms
of the capacity of the lower order input deletion channels,
Cqp(d) for p ∈ {1, . . . , P}, as long as

∑P
p=1 qp = Q.

As stated in Section IV-A the tightest available upper bounds
on C2(d) are provided in [5] in which BAA is employed
to compute the capacity of some genie-aided channels which
are upper bounds on C2(d), however running BAA to obtain
upper bounds on CQ(d) is infeasible for large values of Q.
Running BAA for ternary and even quaternary input dele-
tion channels is still feasible. Specifically, one can obtain
upper bounds on C3(d) by employing the approach used
in [5] in a straightforward manner. This bound can then be
employed in (29) to come up with improved capacity upper
bounds for non-binary deletion channels with odd number of
inputs.

V. EXAMPLES OF THE NEWLY DERIVED

CAPACITY UPPER BOUNDS

In this section, we provide several implications of the results
presented in the paper. Namely, we explicitly demonstrate the
tightest upper bound on the binary input deletion channel
capacity for d ≥ 0.65 and the first non-trivial upper bound
on the non-binary input deletion channel capacity.

A. Binary Deletion Channel

An interesting application of the result (3) on the capacity
of the binary deletion and deletion/substitution channels is in
obtaining improved capacity upper bounds. For instance, the
best known upper bound on the deletion channel capacity is
not convex for d ≥ 0.65 as shown in Fig. 3 (with values taken
from the boldfaced values in [5, Table IV]). As clarified in the
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Fig. 4. Upper bounds on the deletion/substitution channel capacity
for s = 0.03.

table, the best known values for small d are due to [13], for a
wide range (up to d ∼ 0.8) are due to the “fourth version” of
the upper bound (named C4 in [5] which we refer to it as C [5]

4 ),
and for large values of d are due to the “second version”
named C∗

2 in the same paper. Therefore, the deletion channel
capacity upper bound can be improved for d ∈ (0.65, 1) as
C2(1 − 0.35λ) ≤ λC2(0.65) ≤ λC [5]

4 (0.65) with 0 ≤ λ ≤ 1.
That is, we have C2(d) ≤ 0.4143(1 − d) for d ∈ (0.65, 1).
This is illustrated in Fig. 3.

We note that our result is a generalization of the one in [9]
where it was shown that C2(d) ≤ 0.4143(1 − d) as d → 1.
We also note an earlier asymptotic result on a lower bound
derived in [2] which states that C2(d) as d → 1 is larger than
0.1185(1 − d).

As another application of the approach proposed in this
paper, we can consider the capacity of the deletion/substitution
channel. The best known capacity upper bound for this case
is given in [7]. For example [7, Fig. 1] presents several upper
bounds for fixed s = 0.03 which show that the bound is not a
convex function of the deletion probability for d ≥ 0.6, hence
it can be improved. That is, applying the result in our paper, we
obtain, for instance for s = 0.03, Cs(d, 0.03) ≤ 0.3621(1−d)
for d ≥ 0.6 which is a tighter bound as illustrated
in Fig. 4.

B. Non-Binary Deletion Channels

As stated earlier, a trivial upper bound on the capacity of the
Q-ary deletion channel is given by (1 − d) log(Q) which is
the capacity of the Q-ary erasure channel. We have shown
in the previous section that substituting any upper bound
on Cqp(d) into (28) results in an upper bound on the Q-
ary deletion channel capacity. For Q = 2K , by employing
C2(d) ≤ (1 − d), which is the trivial upper bound on the
binary deletion channel capacity, the erasure channel upper
bound on the 2K -ary deletion channel capacity is obtained.
Therefore, any upper bound tighter than (1 − d) on the binary
deletion channel capacity gives an upper bound tighter than

Fig. 5. Comparison among the new upper bound (17), the lower bound (2)
and the trivial erasure channel upper bound for the 4-ary and 8-ary deletion
channels.

log(2K )(1 − d) on the 2K -ary deletion channel capacity. The
amount of improvement is 1−d−CU B

2 (d), where CU B
2 denotes

the upper bound on the binary deletion channel capacity.
As it is shown in [14], (1 − d) log(Q) − 1 ≤ CQ(d) ≤

(1 − d) log(Q), where the lower bound is implied from (1),
therefore the existing trivial upper and lower bounds are tight
enough for asymptotically large values of Q, and i.i.d. dis-
tributed input sequences are sufficient to achieve the capacity.
However, the importance of the result in (28) (Theorem 2 for
the special case of 2K -ary deletion channel) is for moderate
values of Q, where the amount of improvement in closing
the gap between the existing upper and lower bounds is
significant.

To demonstrate the improvement over the trivial era-
sure channel upper bound, we compare the upper bound
C2K (d) ≤ CU B

2 (d) + (1 − d) log(K ) with the erasure channel
upper bound log(2K )(1 − d) and the tightest existing lower
bound (2) (from [6]) in Fig. 5 for 4-ary and 8-ary deletion
channels. Here we utilize the binary deletion channel capacity
upper bounds CU B

2 (d) from [5, Table III] for d ≤ 0.65 and the
upper bound C2(d) ≤ 0.4143(1 − d) provided in Section III
for d ≥ 0.65.

Another implication of the result in Theorem 2 is in study-
ing the asymptotic behavior of the 2K -ary deletion channel
capacity for d → 0. It is shown in [15] that

C2(d) = 1 + d log(d) − A1d + A2d2 + O(d3−ε), (30)

for small d and any ε > 0 with A1 ≈ 1.15416377,
A2 ≈ 1.78628364 and O(.) denoting the standard Landau
(big-O) notation. Employing this result in (17), leads to an
upper bound expansion for small values of d as

C2K (d) ≤ 1 + d log(d) − (A1 + log(K ))d + A2d2

+ log(K ) + O(d3−ε). (31)

In Fig. 6, we compare the above upper bound (by ignoring the
O(d3−ε) term) which serves as an estimate, with the lower
bound (2) for d ≤ 0.1. We observe that by employing the
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Fig. 6. Comparison between the upper bound (31) (ignoring the O(d3−ε)
term) and the lower bound (2).

capacity expansion (30) in (17), a good characterization for the
asymptotic behavior of the 2K -ary deletion channel capacity
is obtained as d → 0.

VI. CONCLUSIONS

In this paper, we present a new upper bound on the capacity
of the binary-input deletion channel and show that it improves
on all previous results for d ≥ 0.65. We also introduce the
first non-trivial upper bound on the non-binary input deletion
channel capacity. For both binary and non-binary input cases,
the approach is based on fragmentation of the input symbol
sequences into smaller subsequences which travel through
independent deletion channels and the surviving symbols are
combined without changing the order in the original sequence.
For the binary case, by considering a random fragmentation
process, an inequality relating the capacity of a binary deletion
channel to two other binary deletion channels is found. For
deletion channels with non-binary inputs, a deterministic frag-
mentation of the input sequence is considered which results in
capacity upper bounds in terms of lower order input deletion
channel capacities. For instance, the capacity of the non-
binary deletion channel is upper bounded in terms of the
binary deletion channel capacity. An immediate application of
the result for the binary input case is in obtaining improved
upper bounds on the capacity of the deletion channel. For an
i.i.d. deletion channel, we prove that C2(d) ≤ 0.4143(1 − d)
for all d ≥ 0.65. This is a stronger result than the earlier
characterization in [9] which is valid only asymptotically as
d → 1. Furthermore, for non-binary deletion channels, the
provided upper bound results in tighter characterizations than
the trivial erasure channel upper bound for the entire range of
deletion probabilities. We also describe a generalization of the
result to the case of deletion/substitution channels and provide
a tighter capacity upper bound for this case as well.

APPENDIX A

PROOF OF INEQUALITIES (8) AND (20)

It follows from the inequality log
( m

m1

) ≤ m Hb(
m1
m ) =

m log (m) − m1 log (m1) − (m − m1) log (m − m1) given

in [16, p. 353] that

log

(
m

m1, . . . , mK

)
=

K−1∑
j=1

log

(
m − ∑ j−1

k=1 mk

m j

)

≤
K−1∑
j=1

⎛
⎝m −

j−1∑
k=1

mk

⎞
⎠ log

⎛
⎝m −

j−1∑
k=1

mk

⎞
⎠

−m j log m j −
K−1∑
j=1

⎛
⎝m −

j∑
k=1

mk

⎞
⎠

× log

⎛
⎝m −

j∑
k=1

mk

⎞
⎠

= m log(m) −
K∑

k=1

mk log(mk).

APPENDIX B

CONCAVITY OF g([m1, . . . , mk])
For the Hessian of g([m1, . . . , mk]), we have

∇2g([m1, . . . , mk]) = 1∑K
k=1 mk

11T

−diag

{
1

m1
, . . . ,

1

mK

}
,

where 1 is an all one vector of length K , i.e., 1 = [1, . . . , 1]T ,
and diag

{
1

m1
, . . . , 1

mK

}
denotes a diagonal matrix whose

k-th diagonal element is 1
mk

. Furthermore, by defining
a = [a1, . . . , aK ], we can write

a∇2gaT = (
∑K

k=1 ak)
2

∑K
k=1 mk

−
K∑

k=1

a2
k

mk

= 1∑K
k=1 mk

( K∑
k=1

a2
k + 2

K−1∑
k=1

K∑
j=k+1

aka j

−
K∑

k=1

a2
k −

K∑
k=1

∑
j �=k m j

mk
a2

k

)

= 1∑K
k=1 mk

K−1∑
k=1

K∑
j=k+1

(
2aka j − m j

mk
a2

k − mk

m j
a2

j

)

= −1∑K
k=1 mk

K−1∑
k=1

K∑
j=k+1

m j

mk
(ak − mk

m j
a j )

2,

which is negative for all mk, m j > 0. Therefore,
∇2g([m1, . . . , mk]) is a negative semi-definite matrix and as a
result g([m1, . . . , mk]) is a concave function of [m1, . . . , mk ].

APPENDIX C

UPPER BOUNDING I (X i ; Y i )

For I (X i ; Y i ), we can write

I (X i ; Y i ) = I (X i ; Y i , N i ) − I (X i ; N i |Y i )

= I (X i ; Y i |N i ) + I (X i ; N i ) − I (X i ; N i |Y i )
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≤ I (X i ; Y i |N i ) + H (Ni )

≤ I (X i ; Y i |N i ) + log(N + 1)

=
N∑

Ni =0

P(N i = Ni )I (X i ; Y i |N i = Ni )

+ log(N + 1), (32)

where in deriving the first inequality we have used the facts
that H (Ni |X i ) = 0 and I (X i ; N i |Y i ) ≥ 0, and in deriving
the second equality the fact that

H (Ni ) = −
N∑

n=0

(
N

n

)
λn λ̄N−n log

((
N

n

)
λn λ̄N−n

)

≤ log(N + 1). (33)

Furthermore, as it is shown in [5], for a finite length trans-
mission over the deletion channel, the mutual information
rate between the transmitted and received sequences can be
upper bounded in terms of the capacity of the channel after
adding some appropriate term, which can be spelled out as
[5, eq. (39)]

I (X i ; Y i |N i = Ni ) ≤ Ni C2(di ) + H (Di |N i = Ni ), (34)

where Di denotes the number of deletions through the trans-
mission of Ni bits over the i -th channel and

H (Di |N i = Ni )

= −
Ni∑

n=0

(
Ni

n

)
dn

i d̄ Ni −n
i log

((
Ni

n

)
dn

i d̄ Ni −n
i

)

≤ log (Ni + 1).

Substituting (34) into (32), we have

I (X i ; Y i ) ≤
N∑

Ni =0

P(N i = Ni ) (Ni C2(di ) + log(Ni + 1))

+ log(N + 1)

≤ E{N i }C2(di ) + 2 log(N + 1),

where the last inequality results since log(Ni+1) ≤ log(N+1).
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