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Achievable Rates for Noisy Channels With
Synchronization Errors

Mojtaba Rahmati, Student Member, IEEE, and Tolga M. Duman, Fellow, IEEE

Abstract—We develop several lower bounds on the capacity
of binary input symmetric output channels with synchronization
errors, which also suffer from other types of impairments such
as substitutions, erasures, additive white Gaussian noise (AWGN),
etc. More precisely, we show that if a channel suffering from
synchronization errors as well as other type of impairments can
be decomposed into a cascade of two component channels where
the first one is another channel with synchronization errors and
the second one is a memoryless channel (with no synchronization
errors), a lower bound on the capacity of the original channel
in terms of the capacity of the component synchronization error
channel can be derived. A primary application of our results is
that we can employ any lower bound derived on the capacity of the
component synchronization error channel to find lower bounds on
the capacity of the (original) noisy channel with synchronization
errors. We apply the general ideas to several specific classes of
channels such as synchronization error channels with erasures
and substitutions, with symmetric q-ary outputs and with AWGN
explicitly, and obtain easy-to-compute bounds. We illustrate that,
with our approach, it is possible to derive tighter capacity lower
bounds compared to the currently available bounds in the lit-
erature for certain classes of channels, e.g., deletion/substitution
channels and deletion/AWGN channels (for certain signal-to-noise
ratio (SNR) ranges).

Index Terms—Synchronization errors, insertion/deletion chan-
nels, channel capacity, achievable rates.

I. INTRODUCTION

D EPENDING on the transmission medium and the par-
ticular design, different limiting factors degrade the per-

formance of a general communication system. For instance,
imperfect alignment of the transmitter and receiver clocks may
be one such factor resulting in a synchronization error channel
modeled typically through insertion and/or deletion of symbols.
Other factors include the effects of additive noise at the receiver
among other impairments. The main objective of this paper is
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to study the combined effects of the synchronization errors and
additive noise type impairments, and in particular, to “decou-
ple” the effects of the synchronization errors from (some of)
the additive noise impairments to obtain expressions relating
the channel capacity of the combined model and the component
synchronization error channel.

We focus on achievable rates for channels which can be con-
sidered as a concatenation of two independent channels where
the first one is a binary channel suffering from synchronization
errors and the second one is either a memoryless binary input
symmetric q-ary output (BSQO) channel or a binary input
AWGN (BI-AWGN) channel. For instance, the first channel
can be a binary insertion/deletion channel and the second one
can be a binary symmetric channel (BSC) or a ternary output
substitution/erasure channel. Specifically, we obtain achievable
rates for the concatenated channel in terms of the capacity of the
component synchronization error channel by lower bounding
the information rate of the concatenated channel for input
distributions which achieve the capacity of the component
synchronization error channel and the statistical parameters of
the memoryless channel. The lower bounds are derived without
the use of the exact capacity achieving input distribution of the
component synchronization error channel, hence any existing
lower bound on the capacity (of the component synchronization
error channel) can be employed to obtain an achievable rate
characterization for the original channel model of interest.

By channels with synchronization errors we refer to the
binary memoryless channels with synchronization errors as
defined by Dobrushin in [1] where every transmitted bit is
independently replaced with a random number of symbols
(possibly the empty string, i.e., a deletion event is also al-
lowed), and the transmitter and receiver have no information
about the position and/or the pattern of the insertions/deletions.
While different specific models on channels with synchroniza-
tion errors are considered in the literature, commonly used
models include insertion/deletion channels such as Gallager’s
insertion/deletion channel [2], the sticky channel [3] and the
segmented insertion/deletion channel [4].

Dobrushin [1] proved that Shannon’s theorem applies for
discrete memoryless channels with synchronization errors by
demonstrating that information stability holds. That is, for the
capacity of the synchronization error channel, Cs, we can
write Cs = lim

N→∞
max
P (X)

1
N I(X;Y ) where X and Y are the

transmitted and received sequences, respectively, and N is the
length of the transmitted sequence. Therefore, the information
and transmission capacities of the memoryless channels with
synchronization errors are equal and we can employ any lower
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bound on the information capacity as a lower bound on the
transmission capacity of a channel with synchronization er-
rors. In [5], the author extends Dobrushin’s result on discrete
memoryless channels with synchronization errors to the case of
continuous output memoryless channels with synchronization
errors.

There are many papers deriving upper and/or lower bounds
on the capacity of the insertion/deletion channels, e.g., see
[6]–[12]; however, only a very few results exist for insertion/
deletion channels with substitution errors, e.g., [2], [13], [14] or
in the presence of AWGN, e.g., [15], [16]. Our interest is on the
latter, in fact, on more general models incorporating erasures as
well as q-ary channel outputs.

Let us review some of the existing relevant results on
insertion/deletion channels in a bit more detail. In [2], Gallager
considers a channel model with substitution and insertion/
deletion errors (sub/ins/del) where each bit gets deleted with
probability pd, replaced by two random bits with probability pi,
correctly received with probability pc=(1− pd − pi)(1− ps),
and changed with probability pf =(1−pd−pi)ps, and derives
a lower bound on the channel capacity (in bits/use) given by

C ≥ 1 + pd log pd + pi log pi + pc log pc + pf log pf , (1)

where log(·) is in base 2. In [13], several upper and lower
bounds are developed on the capacity of the ins/del/sub channel,
where a genie-aided decoder is employed that is supplied
with side information about some suitably selected random
processes giving rise to an auxiliary memoryless channel in
such a way that the Blahut-Arimoto algorithm (BAA) can
be employed to obtain upper bounds on the capacity of the
original channel. Furthermore, it is shown that by subtracting
some quantity from the derived upper bounds which is, roughly
speaking, more than the extra information provided by the
side information, lower bounds on the capacity can also be
derived. In [16], Monte Carlo simulation based results are used
to estimate the information rates of different insertion and/or
deletion channels even in the presence of intersymbol interfer-
ence (ISI) in addition to AWGN with independent uniformly
distributed (i.u.d.) input sequences. In [15], the synchronization
errors are modeled as a Markov process and simulations are
used to compute achievable information rates of an ISI channel
with synchronization errors in the presence of AWGN. In [11],
Rahmati and Duman compute analytical lower bounds on the
capacity of the independent and identically distributed (i.i.d.)
del/sub and i.i.d. del/AWGN channels, by lower bounding the
mutual information rate between the transmitted and received
sequences for i.u.d. input sequences focusing on small deletion
probabilities.

The paper is organized as follows. In Section II, we for-
mally give the models for binary input symmetric q-ary output
channels with synchronization errors and BI-AWGN chan-
nels with synchronization errors. In Section III, we give two
lemmas which will be useful in the proof of the result on
BSQO channels with synchronization errors. In Section IV,
we first present the main results on BSQO channels for arbi-
trary values of q, and then, we focus on the specific case of
substitution/erasure/synchronization error channel which is a

Fig. 1. Binary input symmetric q-ary output channel with synchronization
errors.

binary input symmetric ternary output channel. In Section V,
we lower bound the capacity of a synchronization error channel
with AWGN (abbreviated as AWGN/synch channel) in terms
of the capacity of the component synchronization error chan-
nel. We present several numerical examples illustrating the
derived results in Section VI. Finally, we conclude the paper
in Section VII.

II. CHANNEL MODELS

A general memoryless channel with synchronization errors
[1] is defined via a stochastic matrix {p(yi|xi), yi∈Y, xi∈X}
where X is the input alphabet (e.g., for a binary input channel
X = {0, 1}), and Y is the (possibly empty) set of output sym-
bols, 0 ≤ p(yi|xi) ≤ 1, and

∑
yi∈Y p(yi|x) = 1. As a particular

instance of this channel, if p(yi = ∅|xi) = pd (∅ denoting the
null string) and p(yi = xi) = 1− pd, we obtain an i.i.d. dele-
tion channel.

A. Concatenation of a Synchronization Error Channel With a
Memoryless BSQO Channel

To model synchronization errors as well as other types of
impairments (e.g., substitution or erasure errors), we consider
the concatenation of an arbitrary binary input binary output
synchronization error channel with a memoryless BSQO chan-
nel. We refer to such a channel as a BSQO channel with syn-
chronization errors. The concatenation of the two independent
channels is depicted in Fig. 1 in which X and Y represent the
input and output sequences of the component synchronization
error channel, respectively, and Y and Y (q) represent the
input and output sequences of the BSQO channel, respectively.
By a symmetric channel we refer to the definition given in
[17, p. 94], i.e., a channel is symmetric if by dividing the
columns of the transition matrix into sub-matrices, in each sub-
matrix, each row is a permutation of any other row and each
column is a permutation of any other column. For example,
a channel with independent substitution, erasure and synchro-
nization errors (sub/ers/synch channel) can be considered as
a concatenation of a synchronization error channel with input
sequence X and output sequence Y and a substitution/erasure
channel (binary input ternary output channel) with input se-
quence Y and output sequence Y (3). In such a model, each
bit is independently flipped with probability ps or erased with
probability pe, as illustrated in Fig. 2.

Another example is a binary input symmetric quaternary
output channel with synchronization errors which can be de-
composed into two independent channels such that the first one
is a memoryless synchronization error channel and the second
one is a memoryless binary input symmetric quaternary output
channel illustrated in Fig. 3.
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Fig. 2. Input-output relation in the substitution/erasure channel (P (Y
(3)
i |Yi)

for all 1 ≤ i ≤ |Y |).

Fig. 3. Input-output relation in the binary input quaternary output channel

(P (Y
(4)
i |Yi) for all 1 ≤ i ≤ |Y |).

Fig. 4. AWGN channel with synchronization errors.

B. Concatenation of a Synchronization Error Channel With a
BI-AWGN Channel

To model the effect of both synchronization errors and
AWGN, we can consider concatenation of a binary input binary
output synchronization error channel with a BI-AWGN chan-
nel. More precisely, in the overall channel, bits are transmitted
using binary phase shift keying (BPSK) and the received signal
contains AWGN in addition to the synchronization errors. Fig. 4
illustrates the overall channel model which we refer to as
BI-AWGN channel with synchronization errors. We use X̄
to denote the input sequence to the first channel which is a
BPSK modulated version of the binary input sequence X , i.e.,
X̄i = 1− 2Xi and Ȳ to denote the output sequence of the first
channel and input to the second one. Ỹ is the output sequence
of the second channel that is the noisy version of Ȳ , i.e.,

Ỹi = Ȳi + Zi,

where Zi’s are i.i.d. zero mean Gaussian random variables with
variance σ2, and Ỹi and Ȳi are the ith received and transmitted
bits of the second channel, respectively.

C. Simple Example of a Synchronization Error Channel
Decomposition Into Two Independent Channels

The procedure used in finding the capacity bounds in this
paper can be employed for any channel which can be decom-
posed into two independent channels such that the first one
is a memoryless synchronization error channel and the second
one is a symmetric memoryless channel with no effect on the
length of the input sequence. Therefore, if we can decompose
a given synchronization error channel into two channels with

described properties, we can derive lower bounds on the ca-
pacity of the concatenated channel. The decomposition of the
original synchronization error channel into a well characterized
synchronization error channel and a memoryless channel could
be done in such a way that lower bounding the capacity of
the component synchronization error channel can be simpler
than the capacity analysis of the original synchronization error
channel. In Table I, we provide an example of a hypothetical
channel with synchronization errors that can be decomposed
into a different synchronization error channel and a memoryless
binary symmetric channel (BSC). In Table II, the two channels
used in the decomposition are given.

III. ENTROPY BOUNDS FOR BINARY INPUT q-ARY OUTPUT

CHANNELS WITH SYNCHRONIZATION ERRORS

In the following two lemmas, we provide a lower bound on
the output entropy and an upper bound on the conditional output
entropy of the binary input q-ary output channel in terms of
the corresponding output entropies of the component synchro-
nization error channel, respectively. Note that the following two
lemmas hold for any binary input q-ary output channel with
synchronization errors regardless of any symmetry.

Lemma 1: In any binary input q-ary output channel with
synchronization errors and for all non-negative integer values
of q, we have

H
(
Y (q)
)
−H(Y ) ≥

−EM

⎧⎨⎩log
⎛⎝ ∑

y(q)y,

∑
p(y) �=0

p(y(q)|y,M)p(y(q)|M)

⎞⎠⎫⎬⎭ ,

where M is the random variable denoting the length of the
received sequence, Y denotes the output sequence of the com-
ponent synchronization error channel and the input sequence
of the binary input q-ary output channel, and Y (q) denotes the
output sequence of the binary input q-ary output channel.

Proof: By using two different expansions of H(Y (q),M),
we have

H(Y (q),M) =H
(
Y (q)
)
+H
(
M |Y (q)

)
=H
(
Y (q)|M

)
+H(M).

Since by knowing Y (q), random variable M is also known, i.e.,
H(M |Y (q)) = 0, we can write

H
(
Y (q)
)
= H
(
Y (q)|M

)
+H(M),

Using the same approach for H(Y ) yields

H(Y ) = H(Y |M) +H(M).

Finally, we can write

H
(
Y (q)
)
−H(Y ) =H

(
Y (q)|M

)
−H(Y |M)

=
∑
m

p(m)
[
H
(
Y (q)|m

)
−H(Y |m)

]
,

(2)
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TABLE I
TRANSITION PROBABILITIES OF THE EXAMPLE SYNCHRONIZATION ERROR CHANNEL

TABLE II
TRANSITION PROBABILITIES OF TWO COMPONENT CHANNELS GIVING RISE TO THE SYNCHRONIZATION ERROR CHANNEL IN TABLE I

where p(m) = P (M = m). Using the definition of the entropy,
we obtain

H
(
Y (q)|m

)
−H(Y |m)

= EY (q)

{
− log
(
p
(
Y (q)
))

|m
}
− EY {− log (p(Y )) |m}

= E(Y ,Y (q))

⎧⎨⎩− log

⎛⎝p
(
Y (q)
)

p(Y )

⎞⎠∣∣∣∣∣∣m
⎫⎬⎭

= −
∑
y(q)

∑
y,p(y) �=0

p
(
y(q)|y,m

)
p(y|m) log

(
p
(
y(q)|m

)
p(y|m)

)
,

where EZ{.} denotes the expected value with respect to the
random variable Z. Since − log(x) is a convex function of x,
by applying Jensen’s inequality we arrive at

H
(
Y (q)|m

)
−H(Y |m)

≥ − log

⎛⎝ ∑
y(q)y,

∑
p(y) �=0

p
(
y(q)|y,m

)
p(y|m)

p
(
y(q)|m

)
p(y|m)

⎞⎠
= − log

⎛⎝ ∑
y(q)y,

∑
p(y) �=0

p
(
y(q)|y,m

)
p(y(q)|m)

⎞⎠ . (3)

By substituting this result into (2), the proof follows. �
Lemma 2: In any binary input q-ary output channel with

synchronization errors and for any input distribution, we have
(for all j ∈ {1, · · · ,M})

H
(
Y (q)|X

)
≤ H(Y |X) + E{M}H

(
Y

(q)
j |Yj

)
,

where Yj denotes the j-th output bit of the synchronization
error channel and j-th input bit of the binary input q-ary output
channel, and Y

(q)
j denotes the output symbol of the binary input

q-ary output channel corresponding to the input bit Yj .
Proof: For the conditional output entropy, one way of

decomposition yields

H
(
Y (q),Y |X

)
=H(Y |X) +H

(
Y (q)|Y ,X

)
=H(Y |X) +H

(
Y (q)|Y

)
, (4)

where the last equality follows since X → Y → Y (q)

form a Markov chain. Another way of decomposition for
H(Y (q),Y |X) is

H
(
Y (q),Y |X

)
= H
(
Y (q)|X

)
+H
(
Y |Y (q),X

)
.

From the above two different decompositions, we obtain

H
(
Y (q)|X

)
=H(Y |X) +H

(
Y (q)|Y

)
−H
(
Y |X,Y (q)

)
≤H(Y |X) +H

(
Y (q)|Y

)
.

Since by knowing Y , M is also known, we can write

H
(
Y (q)|Y

)
= H
(
Y (q)|M,Y

)
.

Furthermore, since the second channel is memoryless, we
obtain

H
(
Y (q)|Y ,M

)
=
∑
m

p(m)H
(
Y (q)|Y ,M = m

)
=
∑
m

p(m)mH
(
Y

(q)
j |Yj

)
=E{M}H

(
Y

(q)
j |Yj

)
, (5)

which concludes the proof. �
Combining the results of Lemmas 1 and 2 yields

I(X;Y q) ≥ I(X;Y )− E{M}H
(
Y

(q)
j |Yj

)
−EM

⎧⎨⎩log
⎛⎝∑

y(q)

∑
y,p(y) �=0

p
(
y(q)|y,M

)
p
(
y(q)|M

)⎞⎠⎫⎬⎭ ,

which is a lower bound on the mutual information between
the transmitted and received sequences of the concatenated
channel I(X;Y q) in terms of the mutual information between
the transmitted and received sequences of the component syn-
chronization error channel I(X;Y ).



3858 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 11, NOVEMBER 2014

TABLE III
TRANSITION PROBABILITIES FOR A BINARY

INPUT 5-ARY OUTPUT CHANNEL

TABLE IV
TRANSITION PROBABILITIES FOR A BINARY INPUT

SYMMETRIC 6-ARY OUTPUT CHANNEL

IV. ACHIEVABLE RATES OVER BSQO CHANNELS

WITH SYNCHRONIZATION ERRORS

In this section, we focus on BSQO channels with synchro-
nization errors (as introduced in Section II-A) and provide
lower bounds on their capacity. We first develop the result for
an arbitrary value of q, and then specialize it for sub/ers/synch
channels.

A. Binary Input Symmetric q-ary Output Channel With
Synchronization Errors

The following theorem gives a lower bound on the ca-
pacity of the BSQO channel with synchronization errors for
an arbitrary value of q. The transition probability values
P (Y

(q)
j = k|Ȳj = b) for different values of b ∈ {−1, 1} and

k ∈ Kq are represented by P (Y
(q)
j = k|Yj = b) = pk×b where

Kq =

{{
− q−1

2 , · · · ,−1, 0, 1, · · · , q−1
2

}
, odd q{

− q
2 , · · · ,−1, 1, · · · , q

2

}
, even q.

For instance, Tables III and IV show transition probabilities
for a binary input 5-ary output and binary input 6-ary output
channels, respectively.

Theorem 1: The capacity of the BSQO channel with syn-
chronization errors CQs can be lower bounded by

CQs ≥ Cs − r (H(Pq) + F (Pq)) (6)

in which

Pq =

⎧⎨⎩
{
p− q−1

2
, · · · , p q−1

2

}
, odd q{

p− q
2
· · · , p−1, p1, · · · , p q

2

}
, even q

,

F (Pq) =

⎧⎪⎨⎪⎩
log

(
2p20 +

∑ q−1
2

k=1(pk + p−k)
2

)
, odd q

log
(∑ q

2

k=1(pk + p−k)
2
)

, even q

Cs denotes the capacity of the binary input synchronization er-
ror channel, and r = limn→∞

E{M}
n with n and M denoting the

length of the transmitted and received sequences, respectively.
To prove Theorem 1, we need the following three lemmas.

In the first two lemmas, we give lower bounds on the output

entropy of the binary input q-ary output channels with synchro-
nization errors in terms of the output entropy of the component
binary input binary output synchronization error channels for
arbitrary odd and even values of q, respectively. In the third one
we give an upper bound on the conditional output entropy of the
binary input q-ary output channel with synchronization errors
in terms of the conditional output entropy of the component
synchronization error channel.

Lemma 3: For a BSQO channel with synchronization errors,
for any input distribution and any odd q, we have

H
(
Y (q)
)
≥ H(Y )− E{M} log

⎛⎝2p20 +
q−1
2∑

k=1

(pk + p−k)
2

⎞⎠ ,

where Y denotes the output sequence of the component syn-
chronization error channel and input sequence of the BSQO
channel, Y (q) denotes the output sequence of the BSQO chan-
nel, and M is the length of Y (q).

Proof: From Lemma 1, we have

H
(
Y (q)
)
−H(Y ) ≥

−EM

⎧⎨⎩log
⎛⎝∑

y(q)

∑
y,p(y) �=0

p
(
y(q)|y,M

)
p
(
y(q)|M

)⎞⎠⎫⎬⎭ . (7)

For p(y(q)|y,M = m), we can write

p
(
y(q)|y,M = m

)
=

m∏
i=1

p
(
Y

(q)
i |Yi

)

=

q−1
2∏

k=− q−1
2

plkk , (8)

where lk =
∑m

i=1 δ(yiy
(q)
i − k) in which δ(.) denotes the

Kronecker delta function. For example, in a binary input
5-ary output channel we have p(−1102|1111) = p−1p1p0p2.
Let us define d(y, y(q))b→k =

∑m
i=1 δ(yi − b) δ (y

(q)
i − k),

jk =
∑m

i=1 δ(y
(q)
i − k) and mk(y

(q)) = jk + j−k. For a
fixed output sequence y(q) of length m with jk oc-
currence of y

(q)
i = k and j−k occurrence of y

(q)
i = −k,

there are 2j0
∏ q−1

2

k=1

(
jk
ik

)(
j−k

i−k

)
possibilities for y such that

ik = d(y,y(q))1→k and i−k = d(y,y(q))1→−k, therefore we
can write∑
y,p(y) �=0

p
(
y(q)|y,m

)

≤ 2j0pj00

q−1
2∏

k=1

jk∑
ik=0

(
jk
ik

)
pikk pjk−ik

−k

j−k∑
i−k=0

(
j−k

i−k

)
p
i−k

−k p
j−k−i−k

k

= 2j0pj00

q−1
2∏

k=1

(pk + p−k)
jk+j−k

= (2p0)
m0(y(q))

q−1
2∏

k=1

(pk + p−k)
mk(y(q)). (9)
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Note that in deriving the inequality in (3), the summation is taken
over the values of y with p(y) �= 0. However, in (9) the summa-
tion is taken over all possible values of y of length m (over all
m-tuples), i.e., over all y regardless of whether p(y) = 0 or
p(y) �=0, which results in the upper bound in (9). Furthermore,

by defining Mm,q=
{
m0, · · · ,m q−1

2
|m0 + · · ·+m q−1

2
=m
}

,

for odd q, we can write∑
y(q)

p
(
y(q)|m

) ∑
y,p(y) �=0

p
(
y(q)|y,m

)

≤
∑
Mm,q

⎛⎜⎝ ∑
y(q),mk(y(q))=mk

p
(
y(q)|m

)

× (2p0)
m0

q−1
2∏

k=1

(pk + p−k)
mk

⎞⎠
=
∑
Mm,q

(
m

m0, · · · ,m q−1
2

)
pm0
0

q−1
2∏

l=1

(pl + p−l)
ml

× (2p0)
m0

q−1
2∏

k=1

(pk + p−k)
mk

=

⎛⎝2p20 +
q−1
2∑

k=1

(pk + p−k)
2

⎞⎠m

. (10)

By substituting the result of (10) into the result of Lemma 1, we
arrive at

H
(
Y (q)
)
≥ H(Y )− E{M} log

⎛⎝2p20 +
q−1
2∑

k=1

(pk + p−k)
2

⎞⎠ ,

which concludes the proof. �
It is also worth noting as a side note that any capacity

achieving input distribution over a discrete memoryless chan-
nel results in strictly positive output probabilities for possible
output sequences of the channel [17, p. 95]. In other words,
for any given memoryless channel X → Y , for the capacity
achieving input distribution P (X), if there is an input x
such that P (y|x) �= 0, then P (y) �= 0 as well. Therefore, for
any component synchronization error channel in which Y =
{(y1, · · · , ym)|0 ≤ m ≤ M,yi ∈ {0, 1}}, if there is an input
sequence x with P (y|x) �= 0, then p(y(q)) > 0 for all y(q) of
length m and all possible m. Hence, the bounds in (9) and (10)
hold with equalities for these cases. For instance, i.i.d. deletion
and random insertion channels satisfy this condition.

Lemma 4: For a BSQO channel with synchronization errors,
for any input distribution and any even q, we have

H
(
Y (q)
)
≥ H(Y )− E{M} log

⎛⎝ q
2∑

k=1

(pk + p−k)
2

⎞⎠ .

Proof: For even values of q, we have

p
(
y(q)|y,M = m

)
=

q
2∏

k=1

plkk p
l−k

−k , (11)

where lk=
∑m

i=1 δ(yiy
(q)
i −k) and l−k=

∑m
i=1 δ(yiy

(q)
i + k).

Furthermore, for a fixed output sequence y(q) of length m with

jk symbols of k, there are
∏ q

2

k=1

(
jk
ik

)(
j−k

i−k

)
possibilities for y

with ik = d(y,y(q))1→k and i−k = d(y,y(q))1→−k. Therefore,
we can write∑
y,p(y) �=0

p
(
y(q)|y,m

)

≤
q
2∏

k=1

jk∑
ik=0

(
jk
ik

)
pikk pjk−ik

−k

j−k∑
i−k=0

(
j−k

i−k

)
p
i−k

−k p
j−k−i−k

k

=

q
2∏

k=1

(pk + p−k)
jk+j−k

=

q
2∏

k=1

(pk + p−k)
mk(y(q)). (12)

If we define Mm,q = {m0, · · · ,m q
2
|m0 + · · ·+m q

2
= m},

for even q, by taking the summation over all the possibilities
of y(q) in (12), we obtain∑
y(q)

p
(
y(q)|m

) ∑
y,p(y) �=0

p
(
y(q)|y,m

)

≤
∑
Mm,q

⎛⎜⎝ ∑
y(q),mk(y(q))=mk

p
(
y(q)|m

) q
2∏

k=1

(pk + p−k)
mk

⎞⎟⎠
=
∑
Mm,q

(
m

m1, · · · ,m q
2

) q
2∏

l=1

(pl + p−l)
ml

q
2∏

k=1

(pk + p−k)
mk

=

⎛⎝ q
2∑

k=1

(pk + p−k)
2

⎞⎠m

. (13)

By substituting the result of (13) into (7), we obtain

H(Y (q))−H(Y ) ≥ − log

⎛⎝ q
2∑

k=1

(pk + p−k)
2

⎞⎠∑
m

mp(m)

= − E{M} log

⎛⎝ q
2∑

k=1

(pk + p−k)
2

⎞⎠ .

which concludes the proof. �
Lemma 5: For a BSQO channel with synchronization errors,

for any input distribution, we have

H(Y (q)|X) ≤ H(Y |X) + E{M}H(Pq).

Proof: By using the result of Lemma 2, we can write

H
(
Y (q)|X

)
≤E{M}H

(
Y

(q)
j |Yj

)
+H(Y |X)

=E{M}H(Pq) +H(Y |X),

which concludes the proof. �
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We can now complete the proof of the main theorem of this
section.

Proof of Theorem 1: Let X be distributed according to
P (X) for both X → Y and X → Y (q) channels. Combining
the results of Lemmas 4 and 5, we obtain

I
(
X;Y (q)

)
≥ I(X;Y )− E{M} (H(Pq) + F (Pq)) .

Furthermore, considering P (X) as the capacity achieving input
distribution of the channel X → Y and using the fact that M
is independent of the input distribution P (X), we can write

lim
n→∞

1

n
I
(
X;Y (q)

)
≥ lim

n→∞

1

n
I(X;Y )−r (H(Pq)+F (Pq))

=Cs − r (H(Pq) + F (Pq)) .

Hence for CQs, we have

CQs ≥ lim
n→∞

1

n
I
(
X;Y (q)

)
≥Cs − r (H(Pq) + F (Pq)) ,

concluding the proof. �

B. Substitution/Erasure Channels With Synchronization Errors

We now consider sub/ers channel as a special case of binary
input symmetric q-ary output channel with q = 3. From the
result of Theorem 1, we obtain the following corollary.

Corollary 1: The capacity of the sub/ers/synch channel Cses

can be lower bounded by

Cses≥Cs−r
[
H(ps, pe, 1−ps−pe)+log

(
(1−pe)

2+2p2e
)]

,
(14)

where Cs denotes the capacity of the synchronization error
channel.

Since we have considered the general synchronization error
channel model of Dobrushin [1], the lower bound (14) holds for
many different models on channels with synchronization errors.
A popular model for channels with synchronization errors is the
Gallager’s ins/del model.1 If we employ the Gallager’s model
for which the parameter r is given by

r = lim
n→∞

E{M}
n

= lim
n→∞

1

n
nE{|s|}

=1− pd + pi, (15)

where |s| denotes the length of the output sequence in one use
of the ins/del channel, and the equality results since the channel
is memoryless. By utilizing the result of (15) in (14), we obtain
the following two corollaries.

1In fact, Gallager’s model in general refers to a channel with insertion,
deletion and substitution errors, but with Gallager’s ins/del model we refer to
the case with ps = 0 (i.e., substitution error probability being zero).

Corollary 2: The capacity of the sub/ers/ins/del channel
Cseid is lower bounded by

Cseid ≥ Cid − (1− pd + pi)

×
[
H(ps, pe, 1− ps − pe) + log

(
(1− pe)

2 + 2p2e
)]

,

(16)

where Cid denotes the capacity of an insertion/deletion channel
with parameters pd and pi.

Taking pe = 0 in this channel model gives the ins/del/sub
channel, hence we have the following simple result.

Corollary 3: The capacity of the ins/del/sub channel Cids

can be lower bounded by

Cids ≥ Cid − (1− pd + pi)Hb(ps). (17)

V. ACHIEVABLE RATES OVER BI-AWGN CHANNELS

WITH SYNCHRONIZATION ERRORS

In this section, we consider a binary synchronization error
channel in the presence of AWGN as defined in Section II-B,
and we derive a lower bound on its capacity. The main result is
given in the following theorem.

Theorem 2: Let Cs denote the capacity of the synchroniza-
tion error channel, then for the capacity of the AWGN/synch
channel CAs, we have

CAs ≥ Cs − r

[
log(e)

(
2√
2πσ

e−
1

2σ2 − 2

σ2
Q

(
1

σ

))
+ log

(
1 +Q

(
1

σ

)
e

4

σ2 Q

(
3

σ

))]
. (18)

where Q(.) is the right tail probability of the standard normal
distribution.

Proof: To prove the theorem, we first define an appro-
priate symmetric non-uniform quantizer with 2W quantization
levels. Then, by letting W go to infinity and employing the
result of Theorem 1, we complete the proof. Noting that any
processing on the output sequence of a channel results in a
lower bound on the capacity of the channel, it is guaranteed
that our approach will result in a lower bound on the capacity
of the synch/AWGN channel as desired.

By utilizing a symmetric quantizer with 2W quantization
levels on the output symbols Ỹj , for the transition probabilities
of the resulting binary input symmetric 2W -ary output channel,
we have

pw =P
(
Y (2W ) = bw|X̄j = b

)
=

{
P (tw−1 < Ỹj < tw|X̄j = 1), 0 < w ≤ W

P (t−w < Ỹj < t1−w|X̄j = −1), −W ≤ w < 0
,

where t−w = −tw, t0 = 0 and tw−1 < tw for w = {1, · · · ,W}.
We choose the quantization step sizes, i.e., Δw = tw − tw−1

for w = {1, · · · ,W}, to satisfy p1 = p2 = · · · = pW . Note that
due to the symmetry of the quantizer, we have Δ−w = Δw

(as illustrated in Fig. 5). Furthermore, by defining P = Q
(
1
σ

)
,

we have
W∑

w=1
p−w = P and

W∑
w=1

pw = 1− P which results in

pw = 1−P
W for w = {1, · · · ,W}.
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Fig. 5. Symmetric non-uniform quantizer step sizes.

Using the result of Theorem 1, to derive a lower bound on the
capacity of the channel with 2W -level quantized outputs, we

need to obtain H(P2W ) + log
(∑W

w=1(pw + p−w)
2
)

in which

P2W = {p−W , · · · , p−1, p1, · · · , pW }. It can be shown that (see
Appendix A)

lim
W→∞

(
H(P2W ) + log

(
W∑

w=1

(pw + p−w)
2

))

= log(e)

(
2e−

1

2σ2

√
2πσ

− 2

σ2
P

)
+ log

(
1 + P + e

4

σ2 Q

(
3

σ

))
Finally, by substituting this result into (6), the proof follows. �

One can also consider the use of a uniform quantizer which
after some computations gives

CAs ≥ Cs − r log

(√
e

2
(1 + e−

1

σ2 )

)
. (19)

However, the symmetric non-uniform quantizer considered in
Theorem 2 provides a tighter lower bound on the capacity of
the AWGN/synch channel compared to the one in (19). For
instance, even for σ = 0, i.e., the noiseless scenario, unlike the
expression in (18), (19) does not match with the trivial result
CAs = Cs.

VI. NUMERICAL EXAMPLES

In this section, we give several numerical examples of the
lower bounds on the capacity of the ins/del/sub and del/AWGN
channels and compare them with the existing ones in the
literature.

A. Insertion/Deletion/Substitution Channel

In Table V, we compare the lower bound on the capacity
of the ins/del/sub channel (17) with the existing lower bounds
in [2], [13] for several values of pd, pi and ps. We employ
the lower bound derived in [7] as the lower bound on the
capacity of the deletion channel and the lower bound in [13]
as the lower bound on the capacity of the ins/del channel in
(17). Note that the Gallager’s model in [2] by parameters pd,
pi and pc can be considered as concatenation of an ins/del
channel with parameters pd and pi, and a BSC channel with
cross error probability of ps where ps is the solution of
pc = (1− ps)(1− pd − pi).

TABLE V
COMPARISON OF THE LOWER BOUND DERIVED ON THE CAPACITY OF

THE INS/DEL/SUB CHANNEL WITH THE EXISTING LOWER AND

UPPER BOUNDS (BOLDFACE VALUES SHOW THE BEST BOUNDS)

The advantage of the lower bound (17) is in using the tightest
lower bound on the capacity of the ins/del channel (lower
bound from [13]) in lower bounding the capacity of the overall
channel, i.e., the information rate of the overall channel is
lower bounded for the input distribution which results in the
tightest lower bound on the capacity of the ins/del channel.
We observe that for pi = 0, a fixed pd and small values of ps,
the lower bound (17) improves the lower bound given in [13].
This is not unexpected, because for small values of ps the input
distribution achieving the capacity of the i.i.d. deletion channel
is not far from the optimal input distribution of the del/sub
channel. We also observe that the lower bound (17) outperforms
the lower bound given in [2]. However, for the case pi �= 0 it
does not improve the result given in [13]. The reason is that we
substituted the result from [13] as a lower bound on the capacity
of the ins/del in (17) to obtain a lower bound on the capacity of
the ins/del/sub channel.

B. Insertion/Deletion/AWGN Channel

We now give several numerical examples of the lower bound
(18) on the capacity of the ins/del/AWGN channel and com-
pare them with existing results. For comparison purposes, we
consider the simulation based bound of [16] obtained for i.u.d.
input sequences through Monte-Carlo simulations.

Fig. 6 shows a comparison of the lower bound on the capacity
of the del/AWGN channel in (18) with the results in [16]. We
observe from Fig. 6 that for small values of σ2, the lower bound
(18) improves the one given in [16]. This is because in deriving
the capacity lower bound (18) for the del/AWGN channel, we
employ the tightest lower bound available on the capacity of
the deletion channel while the result in [16] uses i.u.d. inputs.
Furthermore, we observe that the lower bound (18) is not close
to the simulation based results of [16] for large σ2 values and
small deletion probabilities. This is not unexpected, because in
[16], the achievable information rate for i.u.d. input sequences
are obtained (through lengthy Monte-Carlo simulations) and
i.u.d. inputs are close to optimal. We further note that the pro-
cedure employed in [16] is only useful for computing capacity
lower bounds for small values of deletion probabilities, e.g.,
pd ≤ 0.1, while the lower bound in (18) holds for the entire
range of deletion probabilities by employing any lower bound
on the capacity of the deletion channel in lower bounding the
capacity of the deletion/AWGN channel.
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Fig. 6. Comparison between the lower bound (18) with the lower bound in
[16] versus SNR for different deletion probabilities.

VII. SUMMARY AND CONCLUSION

In this paper, we presented several lower bounds on the
capacity of binary input symmetric output channels with syn-
chronization errors in addition to substitutions, erasures or
AWGN. We showed that the capacity of any channel with
synchronization errors which can be considered as a cascade
of two channels (where only the first one suffers from syn-
chronization errors and the second one is a memoryless chan-
nel) can be lower bounded in terms of the capacity of the
first channel and the parameters of the second channel. We
considered two classes of channels: binary input symmetric
q-ary output channels (e.g., for q = 3 a binary input channel
with substitutions and erasures) with synchronization errors and
BI-AWGN channels with synchronization errors. We gave the
first lower bound on the capacity of substitution/erasure channel
with synchronization errors and the first analytical result on
the capacity of BI-AWGN channel with synchronization errors.
We also demonstrated that the lower bounds developed on
the capacity of the del/AWGN channel for small σ2 values
and the del/sub channel for small values of ps improve the
existing ones.

APPENDIX A
PART OF THE PROOF OF THEOREM 2

To calculate H(P2W ) + log
(∑W

w=1(pw + p−w)
2
)

,

we first compute HW = H(P2W )−log(W ), then

log
(∑W

w=1(pw + p−w)
2
)
+ log(W ). For HW , we have

HW = −
W∑

w=1

pw log(pw)−
W∑

w=1

p−w log(p−w)− log(W )

= −(1− P ) log(1− P )−
W∑

w=1

p−w log(Wp−w). (20)

To calculate −
∑W

w=1 p−w log(Wp−w), we first derive a rela-
tion between pw and p−w by using the fact that Δw = Δ−w. For

large W and w = {1, · · · ,W}, we have pw ∼= f(1− tw)Δw

and p−w
∼= f(1 + tw)Δw, where f(x) = 1√

2πσ
e−

x2

2σ2 . Further-

more, since pw = 1−P
W for w = {1, · · · ,W} and f(1+tw)

f(1−tw) =

e−
2tw
σ2 , we can write

p−w
∼= f(1 + tw)

f(1− tw)
pw

=
1− P

W
e−

2tw
σ2 ,

with the understanding that the approximation becomes exact
as W → ∞. By using this result, we obtain

lim
W→∞

−
W∑

w=1

p−w log(Wp−w)

= lim
W→∞

−
W∑

w=1

p−w

(
log(1− P ) + log

(
e−

2tw
σ2

))

= −P log(1− P )− lim
W→∞

W∑
w=1

p−w log
(
e−

2tw
σ2

)
, (21)

where we used the fact that
∑W

w=1 p−w = P . Furthermore, for

lim
W→∞

−
W∑

w=1
p−w log(e−

2tw
σ2 ), we can write

lim
W→∞

−
W∑

w=1

p−w log
(
e−

2tw
σ2

)

= lim
W→∞

log(e)

W∑
w=1

f(1 + tw)Δw
2tw
σ2

= log(e)

∞∫
0

f(1 + t)
2t

σ2
dt

= log(e)
2

σ2

∞∫
0

t√
2πσ

e−
(t+1)2

2σ2 dt

= log(e)

(
2√
2πσ

e−
1

2σ2 − 2

σ2
P

)
. (22)

By substituting (22) and (21) into (20), we obtain

lim
W→∞

HW =− log(1− P ) + log(e)

(
2√
2πσ

e−
1

2σ2 − 2

σ2
P

)
.

(23)

At this point, we only need to obtain the exact value of∑W
w=1(pw + p−w)

2, where we have

W∑
w=1

W (pw + p−w)
2 =

W∑
w=1

W (p2w + 2pwp−w + p2−w)

= (1− P )2 + 2P (1− P )+

W∑
w=1

Wp2−w.

(24)
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Furthermore, if we let W go to infinity, for
∑W

w=1 Wp2−w,
we can write

lim
W→∞

W∑
w=1

Wp2−w

= lim
W→∞

W∑
w=1

Wf(1 + tw)Δw
f(1 + tw)

f(1− tw)
pw

= lim
W→∞

(1− P )
W∑

w=1

1√
2πσ

e−
(tw+1)2

2σ2 e−
2tw
σ2 Δw

= (1− P )

∞∫
0

1√
2πσ

e−
(t+1)2

2σ2 e−
2t

σ2 dt

= (1− P )

∞∫
0

1√
2πσ

e−
(t+3)2−8

2σ2 dt

= (1− P )e
4

σ2 Q

(
3

σ

)
. (25)

Using the results of (25) and (23), we obtain

lim
W→∞

(
H(P2W ) + log

(
W∑

w=1

(pw + p−w)
2

))

= log(e)

(
2e−

1

2σ2

√
2πσ

− 2

σ2
P

)
+ log

(
1 + P + e

4

σ2 Q

(
3

σ

))
.
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