
852 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

Capacity Bounds and Concatenated Codes over
Segmented Deletion Channels

Feng Wang, Tolga M. Duman, Fellow, IEEE, and Defne Aktas, Member, IEEE

Abstract—We develop an information theoretic characteriza-
tion and a practical coding approach for segmented deletion
channels. Compared to channels with independent and identically
distributed (i.i.d.) deletions, where each bit is independently
deleted with an equal probability, the segmentation assumption
imposes certain constraints, i.e., in a block of bits of a certain
length, only a limited number of deletions are allowed to occur.
This channel model has recently been proposed and motivated
by the fact that for practical systems, when a deletion error
occurs, it is more likely that the next one will not appear
very soon. We first argue that such channels are information
stable, hence their channel capacity exists. Then, we introduce
several upper and lower bounds with two different methods in an
attempt to understand the channel capacity behavior. The first
scheme utilizes certain information provided to the transmitter
and/or receiver while the second one explores the asymptotic
behavior of the bounds when the average bit deletion rate is
small. In the second part of the paper, we consider a practical
channel coding approach over a segmented deletion channel.
Specifically, we utilize outer LDPC codes concatenated with inner
marker codes, and develop suitable channel detection algorithms
for this scenario. Different maximum-a-posteriori (MAP) based
channel synchronization algorithms operating at the bit and
symbol levels are introduced, and specific LDPC code designs are
explored. Simulation results clearly indicate the advantages of the
proposed approach. In particular, for the entire range of deletion
probabilities less than unity, our scheme offers a significantly
larger transmission rate compared to the other existing solutions
in the literature.

Index Terms—Segmented deletion channel, synchronization
errors, information stability, capacity bounds, MAP detection,
LDPC codes, marker codes.

I. INTRODUCTION

SYNCHRONIZATION errors represent important types of
channel impairments impacting design of communication

systems. Such errors may be caused by a mismatch between

Paper approved by S.-Y. Chung, the Editor for LDPC Coding and Infor-
mation Theory of the IEEE Communications Society. Manuscript received
December 8, 2011; revised July 10 and September 28, 2012.

This work is funded by the National Science Foundation under the
contract NSF-TF 0830611.

Part of the work was presented at the Forty-Ninth Annual Allerton Confer-
ence on Communication, Control, and Computing, Monticello, IL, September
2011.

F. Wang is with the School of Electrical, Computer and Energy Engineering
(ECEE), Arizona State University, Tempe, AZ 85287-5706, USA (e-mail:
feng.wang83@asu.edu).

T. M. Duman is with the Department of Electrical and Electronics
Engineering, Bilkent University, Bilkent, Ankara, 06800, Turkey (e-mail:
duman@ee.bilkent.edu.tr). He is on leave from the School of ECEE of
Arizona State University.

D. Aktas is with the Department of Electrical and Electronics Engi-
neering, Bilkent University, Bilkent, Ankara, 06800, Turkey (e-mail: dak-
tas@ee.bilkent.edu.tr).

Digital Object Identifier 10.1109/TCOMM.2012.010213.110836

the transmitter and receiver clocks, or imperfect timing-
alignment, e.g., in the read/write process of a bit-patterned
media recording system [1]. As a result of these errors,
transmitted symbols may be deleted and random symbols may
be inserted into the received data stream. The positions of
the deletions or insertions are unknown, and the resulting
models are referred to as insertion/deletion channels. Since
the positions of the insertions/deletions are unknown, study
of such channels from an information theoretic or a practical
coding point of view prove to be remarkably difficult [2].

Various models for insertion/deletion channels have been
proposed in the literature [3]–[5]. Most models assume that
synchronization errors occur independently of each other. In
this paper, we consider a different type of synchronization er-
rors, i.e., binary insertion/deletion channels with the additional
segmentation assumption, which was first introduced in [6].
According to the segmentation assumption, several consecu-
tively transmitted bits are considered as one block or segment
and the number of insertions/deletions within each segment
is limited to a certain number. Motivation of studying this
channel model is that the segmentation assumption appears
naturally in many practical systems. For instance, consider
the bit-patterned media recording systems for which the read-
head cannot perfectly match to the pre-patterned magnetic
islands [1]; when a particular island is skipped or read multiple
times (due to cycle slips), the next deletion/insertion event will
appear only after some time. See also [7] for intermittent errors
in high density magnetic recording channels. Another example
of this channel model is a wireless communication system
with a varying sampling rate, caused by an inadequate yet
low-cost timing recovery block [8]. Only during the interval
of changing the sampling rate, insertion/deletion errors may
occur, which corresponds to several segments of bits with
synchronization errors.

Most of the previous results on the capacity bounds for
channels with synchronization errors focus on the (bit-wise)
i.i.d. channel model [9]–[13], and cannot be directly used for
the case of segmented deletion channels. For example, in a
recent paper [14], the authors specify a memoryless synchro-
nization error channel by a stochastic transition probability
matrix, and obtain analytical lower bounds on the capacity for
channels with deletions or duplications only, some of which
are expected to be tight for small deletion or duplication prob-
abilities. There is also little work on practical channel coding
schemes over the segmented deletion channel, as most of
the existing code designs for i.i.d. insertion/deletion channels
cannot be directly applied, e.g., in [15]–[18]. The only existing
coding approach for this channel is given in [6], where the

0090-6778/13$31.00 c© 2013 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52924093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WANG et al.: CAPACITY BOUNDS AND CONCATENATED CODES OVER SEGMENTED DELETION CHANNELS 853

proposed codes can correct all the insertions/deletions with no
errors when only a single deletion/insertion error per segment
is allowed. The key idea is to encode the data sequence so
that each segment is a codeword from a 1-deletion/insertion
correcting code. Other constraints are also enforced on the
codewords which allow for a simple left-to-right, segment
by segment decoding algorithm. As an example, a codebook
containing 12 codewords is found for a segment size of b = 8,
resulting in an overall code rate of R = 0.448. Higher code
rates can be achieved for larger b. Although some extensions
have also been studied offering higher code rates, these coding
algorithms require some check bits and check sums to be
known at the receiver side leading to the need of a perfect
side-information channel [6].

In this paper, we aim at the development of both the infor-
mation theoretic and practical coding results for the segmented
deletion channel. In particular, we consider the elementary
segmented deletion channel, i.e., no more than one deletion
per segment is allowed. We first show that the segmented
deletion channel falls within the framework of memoryless
synchronization channels (with non-binary inputs), and by a
proper application of Dobrushin’s results [19], we prove that
the channel is information stable. Then, we explore several
upper and lower bounds on their capacity by providing the
transmitter and the receiver with genie-aided information, e.g.,
about which segment has a deletion error. We demonstrate that
the derived upper and lower bounds behave similarly for some
range of deletion probabilities, while a wide-range of deletion
probabilities exist where further improvement of the results
is clearly possible. As an alternative approach, we also show
that when the average bit deletion rate is small, asymptotic
behavior of the capacity can be derived by following a similar
methodology developed in [20] for the case of an i.i.d. deletion
channel. As a result, good approximations of the channel
capacity for small deletion probabilities or large segment
lengths are obtained.

In addition to the capacity characterization of the channel,
we also consider a practical concatenated coding approach,
for which as in [21], concatenation of an outer LDPC code
for error-correction with an inner marker code, which pro-
vides re-synchronization capabilities, is explored. Despite the
similar encoding procedure (with the i.i.d. insertion/deletion
channels), there are significant differences from the previous
work [21]. In particular, the soft-output synchronization algo-
rithm in [21] is no longer optimal. Therefore, we introduce
bit-level and symbol-level MAP detection algorithms which
incorporate the segmentation assumption for improved results.
Our approach is motivated by the fact that if we allow for the
use of powerful codes with strong error-correcting capabilities,
a much higher code rate (compared to the ones reported in [6])
may be achieved with a low probability of error (when we drop
the zero-error requirement).

The rest of the paper is organized as follows. We start
with a detailed discussion of the channel model in the next
section. In Section III, we prove that the Shannon capacity
exists, and describe several capacity upper and lower bounds
for the segmented deletion channel. Asymptotic behavior of
the capacity is also explored for two cases: as the deletion
probability Pd approaching zero with a finite segment length

b, and as the segment length approaches infinity for an
arbitrary Pd. In Section IV, we turn our attention to a prac-
tical concatenated coding scheme along with suitable MAP
detection algorithms for synchronization which incorporate the
segmentation assumption. In Section V, results of LDPC code
design for segmented deletion channel are provided, along
with Monte-Carlo simulation results for several randomly
chosen and specifically designed codes are compared. Finally,
concluding remarks are provided in Section VI.

II. SEGMENTED DELETION CHANNEL MODEL

In this section, we introduce the channel model under
consideration more precisely. The channel is a binary input
and binary output channel, and the transmitted bit sequence
is implicitly partitioned into N consecutive disjoint blocks
{Xn}Nn=1, and each with length b bits. There is no explicit
segment partitioning step at the transmitter side, however, the
receiver is aware of this restriction. During the transmission,
a total number of at most d0 insertions and deletions are
allowed to happen for each Xn, resulting in a received vector
of varying lengths. If we utilize the insertion model in [3],
the length of the received vector corresponding to Xn takes
values in the set {b−d0, . . . , b, . . . , b+d0}, and the positions
of insertion/deletion errors are uniformly chosen within the
segment. In addition to the synchronization errors, substitution
errors can also be incorporated [3], [4], i.e., every non-deleted
bit maybe incorrectly received with probability Ps. There is no
special marker between the bits of different segments, hence
the receiver does not know the segment boundaries.

Throughout the paper, we focus on a particular case,
namely, the elementary segmented deletion channel, i,e., the
segment Xn is received intact with probability 1− Pd, while
one bit within Xn is deleted with probability Pd. If a deletion
occurs in Xn, each bit within this segment is equally likely
to be deleted. Also, the deletions for each segment are inde-
pendent. A simple example is given as follows. Assuming that
the binary sequence 00101101 is transmitted over a segmented
deletion channel with b = 4, it is possible that the third and
fifth bits are deleted, leading to a received sequence of 000101.
However, receiving 001001 is impossible as in this case two
bits from the second segment would need to be deleted, which
is not allowed.

III. CAPACITY BOUNDS FOR SEGMENTED DELETION

CHANNELS

A. Existence of the Shannon Capacity

We first show that the results of Dobrushin in [19] can be
applied directly to the segmented deletion channel model and
as a result the Shannon capacity exists. The key observation is
that Dobrushin’s result is more general than the usual set-up
that it is applied to, that is, information stability [22] holds for
a memoryless channel with synchronization errors, indicating
that the asymptotic behavior of the mutual information density
between the input and output sequences over the sequence
length converges to its mean. Therefore, the Shannon capacity
exists, even when the channel input and output alphabets
are not identical (e.g. binary) and the information and the
transmission capacities are equal. The segmented deletion

854 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

TABLE I
EXAMPLE OF TRANSITION PROBABILITY P (Y′|X′) FOR b = 2.

X′ Y′ = 00 Y′ = 01 Y′ = 10 Y′ = 11 Y′ = 0 Y′ = 1

0 (00) 1 − Pd 0 0 0 Pd 0
1 (01) 0 1 − Pd 0 0 Pd/2 Pd/2

2 (10) 0 0 1 − Pd 0 Pd/2 Pd/2

3 (11) 0 0 0 1 − Pd 0 Pd

channel model can equivalently be described by a 2b-ary
input symbol X ′, and binary sequence of output bits Y′ (of
varying lengths, e.g., for the elementary segmented deletion
channel, of length b or b − 1 bits), it is clear that the model
in [19] encompasses as a special case the segmented deletion
channel model (when the deletions occur independently in
different segments). To illustrate this point further, let us give
a simple example. Consider the segmented deletion channel
with b = 2 and deletion probability of Pd. The equivalent
channel transition matrix P (Y′|X ′) is as given in Table I.

With the above explanation, from [19], we can safely say
that the segmented deletion channel is information stable, and
hence its Shannon capacity exists. In fact, the capacity per
transmitted bit is given by

C = lim
T→∞

1

T
max
P (X)

I(X;Y),

where I(·; ·) is the mutual information between the input
sequence X, of length T , and output sequence Y.

Although the channel capacity exists, evaluation of the
capacity expression is not straightforward. That is, there is
no single-letter or finite-letter formulation which may be
amenable for practical computation which is also the case
for other channel models with synchronization errors. With
this motivation, we next introduce two simple upper/lower
bounds on the capacity of segmented deletion channels. First
of all, an obvious capacity upper bound can be obtained by
providing side information to the receiver about the positions
of all the deletions. Therefore, the channel becomes a binary
erasure channel with memory and an erasure probability Pd/b.
Since the memory does not affect the capacity of an erasure
channel [23], 1− Pd/b becomes a trivial upper bound on the
channel capacity. To obtain a lower bound, we assume that
a long interleaver has been introduced before transmission,
and the corresponding deinterleaver is used at the receiver
before decoding. The equivalent channel is then a binary i.i.d.
deletion channel. Since this is a specific signaling scheme,
any achievable rate over a binary i.i.d. deletion channel with
probability Pd/b would be achievable on the segmented dele-
tion channel providing us with a lower bound on the channel
capacity.

B. Capacity Upper and Lower Bounds with Side Information

In [13], to obtain an upper bound on the capacity for an i.i.d.
deletion channel, some suitable genie-aided information on the
deletion process is revealed to the receiver so that the channel
becomes memoryless. For the segmented deletion channel, we
propose a similar method of obtaining upper and lower bounds
on the capacity by providing some side information to both
the transmitter and the receiver.

1) Upper Bound - Version 1: Define the random pro-
cess V = {Vn}Nn=1, where Vn is a binary valued random

variable which determines whether the n-th segment Xn

experiences a deletion error or not. With the side information
being provided to both the transmitter and receiver, we have

C ≤ 1

b
max
P (Xn)

I(Xn;Yn) ,

where Yn is the received sequence corresponding to Xn with
length either b or b− 1.

Obviously, 1 − Pd fraction of the blocks see noiseless
channels, hence with the transmitter/receiver side information,
we can transmit b bits with no error. The remaining Pd fraction
of blocks will equivalently see a deletion channel with b input
bits and exactly one deletion at the output. The capacity of
such a channel can be computed (for reasonable values of
b)1 using the Blahut-Arimoto Algorithm (BAA) [24], [25].
Denoting the capacity of the deletion channel with b input
and b−1 output bits (where the deleted bit position is random
and uniform) as Cd(b, 1), we can write an upper bound on the
capacity of segmented deletion channel as

C ≤ 1− Pd + Pd
1

b
Cd(b, 1). (1)

2) Upper Bound - Version 2: Following similar line of
arguments, we expect the capacity upper bound to be tighter
when “less” side information is provided to the transmitter
and the receiver. For example, we define the random pro-
cess W = {Wn′}N/2

n′=1, where Wn′ is a random variable taking
values {0, 1, 2}, which determines the number of deletions
in every pair of segments, i.e., in X2n′−1 and X2n′ . When
Wn′ equals 0 or 2, it contains the same information as in the
previous case. Ambiguity only rises when Wn′ = 1, since in
this case, we have no idea which one of the two segments
has the deleted bit, and we simply have a channel with 2b
bits at the input and one deletion. Therefore, we can write the
capacity upper bound as

C ≤ (1− Pd)
2 + 2Pd(1− Pd)

1

2b
Cd(2b, 1) + P 2

d

1

2b
Cd(2b, 2)

= (1− Pd)
2 + Pd(1− Pd)

1

b
Cd(2b, 1) + P 2

d

1

b
Cd(b, 1), (2)

where Cd(2b, 2) denotes the capacity of a channel with 2b
bits of input and one deletion in the first b bits and another
one among last b bits. The second line follows since for the
channel with K segments of input bits and one deletion in each
segment, we can deduce the boundaries of every segment in
the received bit sequence without any additional information
and hence, Cd(Kb,K) = KCd(b, 1). Comparing (1) and (2),
it is obvious that with the random process W, we are able
to expand the capacity upper bound as a quadratic function
of Pd and thus obtain a tighter result, as will be shown
later. Even tighter bounds can be achieved when less and less
side information is used at the expense of a much heavier
computational load on the BAA algorithm. Details of this
further generalization is omitted from this paper.

For large values of b that are not amenable for the BAA, one
can resort to the upper bound Cd(B, 1) ≤ Cd(b, 1)+ (n− 1)b
reported in [13], where B = nb. The bound is tight for large

1The largest value of b we could handle in our computations was 24.

WANG et al.: CAPACITY BOUNDS AND CONCATENATED CODES OVER SEGMENTED DELETION CHANNELS 855

B as it is also shown that

Cd(B, 1) ≥ C′
d(b, 1) + (n− 1)b−H

(
1

n

)
, (3)

where H(·) is the binary entropy function and C′
d(b, 1) is the

achievable rate for a deletion channel with b independent uni-
formly distributed (i.u.d.) input bits and exactly one deletion.
The gap between the upper and lower bounds of Cd(B, 1)
gets smaller as n increases, since the entropy term H(1n)
approaches zero. When B �= nb, another upper bound can
also be used [13]:

Cd(B, 1) ≤ B − 1

B
(2 + Cd(B − 1, 1)) . (4)

3) Lower Bounds: Capacity lower bounds can be obtained
by revealing some side information to the receiver, and then
by subtracting a certain term to make sure what is obtained is
in fact a lower bound. Specifically, we can write

I(X;Y) = I(X;Y,V)−I(X;V|Y) ≥ I(X;Y,V)−H(V) .

To compute I(X;Y,V), we cannot optimize the input distri-
bution for every segment, since the side information is only
provided to the receiver. Instead, we consider i.u.d. inputs.
Hence, the following capacity lower bound is obtained,

C ≥ 1− Pd + Pd
1

b
C′

d(b, 1)−
1

b
H(Pd). (5)

Comparing the capacity upper bound in (1) and
lower bound in (5), we see that the difference is
Pd

1
b (Cd(b, 1)− C′

d(b, 1)) +
1
bH(Pd). When Pd approaches

zero or one, the term 1
bH(Pd) tends to zero. In fact, when Pd

equals zero or one, the segmented deletion channel becomes
a memoryless channel without any synchronization problems,
and the capacity is exactly as given in (1). Furthermore, for
large b values, we would expect 1

b (Cd(b, 1)− C′
d(b, 1)) to

be small. The reason is that since the i.u.d. input sequences
are optimal for the calculation of Cd(b, 0), when the overall
deletion rate per transmitted bit 1

b goes to zero, i.u.d. inputs
will be close to optimal, and therefore, the gap between the
upper and lower bound on the capacity becomes very small.
This observation is quantified in [20], which proves that for an
i.i.d. deletion channel with a small deletion probability, i.u.d.
inputs achieve the first order term of the channel capacity when
we express it as a series expansion in terms of the deletion
probability.

Our final argument is that this approach can be easily
extended to the case when more than one synchronization
errors are allowed in each segment, however, this specific
model is not considered here.

C. Asymptotic Behavior of the Segmented Deletion Channel
Capacity

We now focus on the case where Pd/b is small and
characterize the capacity for a segmented deletion channel
using a similar approach employed in [20] for the case of
i.i.d. deletion channels. In particular, for a finite segment
length b with Pd approaching zero, and for a fixed Pd with
large segment length b, we show that the capacity can be
characterized asymptotically, and therefore, an approximation

to the exact channel capacity can be obtained for small Pd/b
values.

It is proved in [20] that when computing the channel
capacity or capacity bounds for an i.i.d. deletion channel,
one can restrict the input sequence to be a stationary ergodic
process X = {Xi} with Xi ∈ {0, 1}. We make an observation
that the same argument also holds for the segmented deletion
channel as all the steps in the proof remain valid for our case
following a similar approach.

Let Xn be the input sequence of length n and Y = Y(Xn)
represent the corresponding output sequence. Define SL to
be the set of stationary ergodic processes such that no run
(consecutive bits of the same value) has length larger than
L and X∗ to be the i.i.d. Bernoulli(1/2) process, i.e., X∗

i

equals 0 or 1 with probability 1/2 each. We define I(Xn) =
limn→∞ 1

nI(X
n;Y(Xn)), H(X) = limn→∞ 1

nH(Xn). The-
orems 1-3 below present our main results. We note that the
proofs of these theorems and the related lemmas are extensions
of the corresponding ones in [20], which considers i.i.d.
deletion channels.

Theorem 1. Consider a segmented deletion channel with a
fixed segment length b and deletion probability Pd approach-
ing zero. We have ∀ε > 0,

lim
n→∞

1

n
I(X∗,n;Y(X∗,n))

= 1−Pd

b
(1 + log2 b−A)−H(Pd)

b
−O(P 2−ε

d) , (6)

where A =
∑∞

l=1 2
−l−1l log2 l ≈ 1.28853, and O(·) is the

standard big O notation. Clearly, this is an achievability result
and serves as a lower bound on the capacity of the segmented
deletion channel as Pd → 0.

Theorem 2. For a segmented deletion channel with a fixed
segment length b and deletion probability Pd approaching
zero, there exists Pd,0 > 0 such that ∀Pd < Pd,0 and ε > 0,
for any input process we have

lim
n→∞

1

n
I(Xn;Y(Xn))

≤ 1− Pd

b
(1 + log2 b −A)− H(Pd)

b
+O(P

3/2−ε
d) .(7)

Clearly, the right-hand side serves as an upper bound on the
capacity for the segmented deletion channel with a finite b and
Pd → 0.

Before proving the given theorems, we present two lemmas
whose proofs are given in Appendix A.

Lemma 1. For a segmented deletion channel with i.i.d.
Bernoulli(1/2) process as the input, we have ∀ε > 0,

lim
n→∞

1

n
H(Y(X∗,n)|X∗,n)

=
Pd

b
log2 b+

H(Pd)

b
−A

Pd

b
+O(P 2−ε

d) . (8)

Lemma 2. For any ε > 0, there exists K < ∞ and Pd,0 > 0
such that ∀Pd < Pd,0 the following statement holds for the
segmented deletion channel. For any positive integer L∗, if

856 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

X ∈ SL∗ , and H(X) ≥ 1− (
Pd

b

)1−γ
with γ > 0, then

lim
n→∞

1

n
H(Y(Xn)|Xn) ≥ Pd

b
log2 b+

H(Pd)

b
−A

Pd

b

−KP 2−ε
d (1 + P

1/2
d L∗) . (9)

Proof of Theorem 1: Without loss of generality, assume
that n is a multiple of b. We have I(Xn;Y) = H(Y) −
H(Y|Xn). With the i.i.d. Bernoulli(1/2) input process X∗,n,
for the output process Y(X∗,n), we obtain

H(Y(X∗,n))=−
∑
y

P (y) log2(P (y))

=−
n/b∑
m=0

(
n/b

m

)
(1− Pd)

n/b−mPm
d

· log2
(

1

2n−m

(
n/b

m

)
(1− Pd)

n/b−mPm
d

)

=n
(
1− Pd

b

)
+HT , (10)

where y and m represent the realization of process Y and the
corresponding total number of deletions in y, respectively. The
term

HT =

n/b∑
m=0

(
n/b

m

)
(1− Pd)

n/b−mPm
d

· log2
((

n/b

m

)
(1 − Pd)

n/b−mPm
d

)
,

=
1

2
log2(2πe

n

b
Pd(1− Pd)) + o(1)

= O(log2 n),

(using Corollary 1 of [26]). The proof then follows by combin-
ing the results of H(Y(X∗,n)) and H(Y(X∗,n)|X∗,n) given
in Lemma 1.

Proof of Theorem 2: It is clear that for any input Xn, the
number of deletions is Binomial(n/b, Pd) distributed, leading
to

lim
n→∞

1

n
H(Y(Xn)) ≤ 1− Pd

b
, (11)

where the equality is achieved when input sequence is i.i.d.
Bernoulli(1/2) distributed. In light of Theorem 1, for i.u.d
inputs I(X∗,n) > 1 − (

Pd

b

)1−γ
, γ > 0, therefore, we only

need to consider stationary ergodic processes with H(X) ≥
I(X∗,n) > 1 − (

Pd

b

)1−γ
when computing the upper bounds

on the capacity. Combining (11) and Lemma 2, we obtain an
upper bound on I(XL∗) for XL∗ ∈ SL∗ , which is constructed
from X by flipping the (L∗+1)-th bit in each run with a length
longer than L∗, until no run length exceeds L∗.

Next, we show that we do not lose much with this restriction
for large enough L∗ values. Let F be the vector (of the same
length as Y(Xn)) taking values of 1 wherever the correspond-
ing bit in Y(Xn

L∗) is flipped and 0 otherwise. From [20] (Eqn.
(27) and Eqn. (28)), we have |H(Y(Xn))−H(Y(Xn

L∗))| ≤
H(F), |H(Y(Xn)|Xn) − H(Y(Xn

L∗)|Xn
L∗)| ≤ H(F) and

limn→∞ 1
nH(F) ≤ (

Pd

b

)1/2−ε′
log2 L

∗/2L∗ ∀ ε′ > 0, if

L∗ > log2(b/Pd). Therefore, there exists XL∗ ∈ SL∗ such
that

|I(X)− I(XL∗)| ≤
(
Pd

b

)1/2−ε′

log2 L
∗/L∗ , (12)

Combining (11), (12), Lemma 2 and taking L∗ =
 1
Pd

�, we
get the claim.

Theorems 1 and 2 give the asymptotic capacity for an
elementary segmented deletion channel with a fixed segment
length b for small Pd values. For a fixed Pd > 0 and a large
segment length b, we have a different characterization.

Theorem 3. For a fixed Pd, for any ε > 0, there exists b0 >
0, such that ∀b > b0, the following statement holds for the
segmented deletion channel,

lim
n→∞

1

n
I(X∗,n;Y(X∗,n))

≥ 1− Pd

b
(1 + log2 b−A)− H(Pd)

b
−O(b−2+ε) , (13)

where X∗ is the Bernoulli(1/2) process, and

lim
n→∞

1

n
I(Xn;Y(Xn))

≤ 1− Pd

b
(1 + log2 b−A)− H(Pd)

b
+O(b−3/2+ε) , (14)

where X is any input process.

Before the proof of the theorem, a lemma (whose proof is
in Appendix C) is given.

Lemma 3. For any stationary ergodic process X ∈ Sb with
H(X) ≥ 1 − (

Pd

b

)1−γ
γ > 0, and any ε > 0, there exists

κ < ∞ and b0 > 0, such that ∀b > b0

lim
n→∞

1

n
H(Y(Xn)|Xn)

≥ Pd

b
log2 b+

H(Pd)

b
−A

Pd

b
− κb−2+ε(1 + b1/2) . (15)

Specifically, consider an i.i.d. Bernoulli(1/2) process X∗. By
flipping the (b + 1)-th bit in each run with a length longer
than b, until no run length exceeds b, we obtain a modified
process X∗

b ∈ Sb. We can show that

lim
n→∞

1

n
H(Y(X∗,n

b)|X∗,n
b)

=
Pd

b
log2 b+

H(Pd)

b
−A

Pd

b
+O(b−2+ε) . (16)

Proof of Theorem 3: From (10) and (16), we have

I(X∗
b) = 1− Pd

b
(1 + log2 b−A)− H(Pd)

b
−O(b−2+ε) .

(17)
As in [20], define α = P (L0 > b)/b, which is the upper

bound of the density of bits in X∗ to be flipped to ensure
no run length exceeds b. For an i.i.d. Bernoulli(1/2) process,
we have α = 1

b

∑∞
l=b+1 l/2

l+1 = (1 + 2
b)2

−b−1. Therefore,
limn→∞ 1

nH(F) ≤ H(α) = O(b−ζ) with ζ > 2, where F
has the same definition as the one in the proof of Theorem 2.
Following the same steps leading to (12), we can write,
|I(X∗)− I(X∗

b)| = O(b−ζ). Combining this result with (17),

WANG et al.: CAPACITY BOUNDS AND CONCATENATED CODES OVER SEGMENTED DELETION CHANNELS 857

SOURCE

DESTINATION DECODER

ENCODER

CHANNEL

MARKER

MAP
DETECTOR

INSERTIONΠ

Π
-1

OUTER

OUTER

xT
1

yR
1

Fig. 1. Block diagram of the considered concatenated scheme.

the lower bound on the capacity given in (13) is proved.
To obtain the upper bound, again, in light of the achievabil-

ity result, we only consider stationary and ergodic processes
with H(X) ≥ 1−(

Pd

b

)1−γ
, γ > 0. Under this condition, (12)

still holds. Taking L∗ = b, we conclude that |I(X)−I(Xb)| =
O(b−1.5+ε). Combining this result with (11) and (15) (which
provides the upper bound on I(Xb) for Xb ∈ Sb), we get the
claim.

From the above theorems, we conclude that the channel
capacity for segmented deletion channel as Pd

b → 0 is
dominated by the expression

Cest = 1− Pd

b
(1 + log2 b−A)− H(Pd)

b
, (18)

where A ≈ 1.28853.

IV. CONCATENATED CODING OVER SEGMENTED

DELETION CHANNELS

We now focus on a practical channel coding scheme suitable
for segmented deletion channels, as illustrated in Fig. 1.

Our main motivation of choosing this special coding scheme
is that such solutions have been shown in recent literature [21]
to perform well for other types of synchronization error
channels (e.g., i.i.d. deletion/insertion channels). In fact, the
use of markers or watermark along with a powerful error
correcting code is the state-of the art in coding over such
channels [27].

The information bits are first encoded by an outer LDPC
code, then the transmitted sequence is formed by periodically
inserting marker bits to the interleaved sequence of coded bits.
Marker bits and their expected positions are known to both of
the transmitter and the receiver. Marker code structure and
rate optimization is possible for different segmented deletion
channels by using a method introduced in [21] for the i.i.d.
insertion/deletion channel case. The method utilizes the Monte
Carlo simulations to obtain the achievable rates of specific
marker codes over different insertion/deletion channels with
varying marker code rates. Optimized marker code structure
and rate can then be found by after examining different sets
of parameters.

Let xT
1 = {xk}Tk=1 and yR

1 = {yn}Rn=1 be the sequences
of bits at the channel input and channel output, respectively,
where the number T of transmitted bits is a constant system
parameter. We assume T = Nb, where N is the total number
of segments. Since the channel is an elementary segmented

1,d

0,d

1,1d

1k

dp
dp

dp1

dp1

0,d

1,1d

dp1

dp

1

k 1k k
Transition between two segments Transition inside one segment

Fig. 2. Trellis section for the bit-level MAP detector.

deletion channel, the number R of received bits is a random
variable taking values in the set {T −N, T −N + 1, . . . , T },
depending on the realization of the deletion process. The trans-
mitter and the receiver have no information on the positions
of the deletions.

At the receiver side, MAP detection for synchronization
purposes is first executed to generate soft information on
the transmitted bits, by exploiting the marker code structure
and the particular channel characteristics. Then, after being
deinterleaved, this information feeds the outer LDPC decoder.
Iterative detection/decoding is performed when the output soft
information is fedback to the MAP detector to start a new
iteration, according to the turbo principle [28].

In our previous work, MAP detection algorithm was specif-
ically designed for i.i.d. deletion channels [21]. This detector
can be directly applied to a segmented deletion channel
with a deletion probability for each bit set to pd = Pd/b.
However, this would be a sub-optimal choice since it ignores
the additional information due to the segmentation assumption.
For example, if the detector determines that the first bit of a
segment is deleted, we can naturally deduce that there will be
no error in the next b−1 bits. In the following sections, we de-
scribe two other detectors that take the additional segmentation
assumption into consideration and provide improved results.

A. Improved Bit-Level Synchronization

The MAP detection algorithm is similar to the general
forward backward algorithm (FBA) in [28] with some differ-
ences. Let us introduce a trellis diagram, as shown in Fig. 2,
with the state of trellis at time k (when xk is transmitted)
defined to be sk = (dk, i). The term dk denotes the number
of deletions up to time k and i is an indicator, i.e., i = 0 when
no deletion occurs within the segment up to time k, and i = 1
otherwise. The transition probability from one state to another
state is determined by the bit-wise deletion probability, which
is set to be pd = Pd/b. When xk is not the first bit of a
segment, transition for state (d, 1) to (d + 1, 1) or (d + 1, 0)
is prohibited since there has already been one bit deletion in
the segment.

Similar to [21], we define the function

F (xk, yn) =

{
1 if yn = xk

0 if yn �= xk
, and also the sets

of forward/backward variables in the usual sense,
αk(sk) = P (yk−dk

1 , sk), βk(sk) = P (yR
k−dk+1|sk). These

coefficients can be computed by means of the following

858 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

forward/backward recursions [29]:
Case 1: xk is the first bit of the segment:

αk(sk) = P
(
sk = (dk, i),y

k−dk
1

)
= ipd

(
αk−1(dk − 1, 1) + αk−1(dk − 1, 0)

)
+(1− i)(1− pd)

(
αk−1(sk) + αk−1(dk, 1)

)
·
∑
xk

P (xk)F (xk, yk−dk
), (19)

βk−1(sk−1)=P
(
yR
k−1−dk−1+1|sk−1 = (dk−1, i)

)

=(1− i)
(
pdβk(dk−1 + 1, 1) + (1− pd)βk(sk−1)

·
∑
xk

P (xk)F (xk, yk−dk)
)

+i
(
(1− pd)βk(dk−1, 0)

∑
xk

P (xk)F (xk, yk−dk)

+pdβk(dk−1 + 1, 1)
)
, (20)

Case 2: xk is not the first bit of the segment:

αk(sk)=
(
1− pd(1 − i)

)
αk−1(sk)

∑
xk

P (xk)F (xk, yk−dk
)

+ipdαk−1(dk − 1, 0), (21)

βk−1(sk−1)=
(
1− pd(1− i)

)
βk(sk−1)

∑
xk

P (xk)F (xk, yk−dk)

+(1− i)pdβk(dk−1 + 1, 1). (22)

We are interested in the exact “frame synchronization” sce-
nario, leading to

α0(sk) =

{
1 if sk = (0, 0)
0 otherwise

, (23)

βT (sk) =

⎧⎨
⎩

1− Pd if sk = (T −R, 0)
Pd if sk = (T −R, 1)
0 otherwise

. (24)

Finally, the target probability can be computed as
Case 1:

P (yR
1 |xk)= (1− pd)

�k/b�∑
dk=0

1∑
i=0

αk−1(dk, i)βk(dk, 0)F (xk, yk−dk)

+pd

�k/b�∑
dk=0

1∑
i=0

αk−1(dk − 1, i)βk(dk, 1), (25)

Case 2:

P (yR
1 |xk)=

�k/b�∑
dk=0

1∑
i=0

(
1− pd(1− i)

)
αk−1(dk, i)βk(dk, i)

·F (xk, yk−dk) + pd

�k/b�∑
dk=0

αk−1(dk − 1, 0)βk(dk, 1),

(26)

where �· indicates the ceiling function.

B. Symbol-Level Synchronization

As illustrated in [21], the MAP detection algorithm we
described in the previous subsection is not optimal. A symbol-

level MAP detector can be applied under this scenario by
treating one segment as a symbol.

Let us define the binary event Dk,n, with k ∈ {1, 2, . . . , N}
and n ∈ {1, 2, . . . , R}, which denotes whether, of the first
k transmitted segments of bits, exactly n bits are received
or not. Thanks to the assumption of 1-deletion per segment,
symbol-level MAP detection becomes feasible for large val-
ues of b, and the forward/backward recursions are given as
follows:

αk(n)=P (yn
1 , Dk,n)

=Pd αk−1(n−b +1)

b−1∑
j=0

b−1∏
i=0
i�=j

∑
xbk−i

P (xbk−i)F (xbk−i, yn−i′)

+ (1− Pd)αk−1(n−b)

b−1∏
i=0

∑
xbk−i

P (xbk−i)F (xbk−i, yn−i) ,

(27)

and

βk(n)=P (yR
n+1|Dk,n)

=Pd βk+1(n+b −1)
b∑

j=1

b∏
i=1
i�=j

∑
xbk+i

P (xbk+i)F (xbk+i, yn+i′)

+ (1− Pd) βk+1(n+b)
b∏

i=1

∑
xbk+i

P (xbk+i)F (xbk+i, yn+i) ,

(28)

respectively, where i′ = i when i < j and i′ = i − 1 when
i > j. The final soft output information is generated as

p(yR
1 |xb(k−1)+1, . . . , xbk) = Pd

min(bk,R)∑
n=0

b−1∑
j=0

αk−1(n−b+1)βk(n)

·
b−1∏
i=0
i�=j

F (xbk−i, yn−i′)

+(1− Pd)

min(bk,R)∑
n=0

αk−1(n−b)βk(n)

·
b−1∏
i=0

F (xbk−i, yn−i). (29)

Note that both the bit-level and symbol-level synchroniza-
tion algorithms can be extended to the case of generalized
segmented deletion channels. For instance, consider the case
where at most two deletion errors are allowed in each segment.
For the bit-level synchronization algorithm, the indicator i
should then take values of 0, 1 and 2 and the trellis in
Fig. 2 needs to be modified accordingly. For the symbol-level
synchronization algorithm, the necessary change is to consider
one more state in the FBA algorithm, e.g., add αk−1(n−b+2)
in the forward recursion.

C. Computational Complexity Comparisons

For the sake of computational safety, all the calculations of
MAP detection algorithm are implemented in the log domain
to avoid numerical instability. Therefore, instead of the mul-
tiplication operation, the most time-consuming part becomes
log domain addition, denoted as log_add. To compare the

WANG et al.: CAPACITY BOUNDS AND CONCATENATED CODES OVER SEGMENTED DELETION CHANNELS 859

complexity of the two algorithms, in this section, we use the
number of log_add operations required as a metric.

Consider the symbol-level MAP detection with T bit in-
puts and R bit outputs, the size of the trellis diagram is
(R+1)×(N+1), where N = T/b. For every time instance we
only care about T −R+1 states instead of all the R+1 states,
since the maximum number of bits allowed to be deleted is
T−R. From (27), computation of each forward quantity needs
2b + 2 log_add operations. Therefore, there are altogether
N(T −R+ 1)(2b+ 2) log_add operations for the forward
recursion as well as for the backward recursion. For the
same reason, to generate output soft information in (29),
approximately 2bN(T −R+ 1)(b+ 1) log_add operations
are needed for the symbol-level MAP detection.

For the bit-level MAP detection, the size of the trellis
diagram is 2(T − R + 1) × (T + 1). Computation of each
forward quantity needs 2 or 4 log_add operations for (19)
and 3 or 2 operations for (21), depending on the value of i.
Hence, on average, total number of T (T −R+1)(5b+1)/b=
N(T−R+1)(5b+1) log_add operations are required for the
forward recursion. The same result holds for the backward re-
cursion. Following the same line of arguments, approximately
2T (T−R+1)(3b+1)/b = 2N(T−R+1)(3b+1) log_add
operations are needed for the bit-level MAP detector to
generate output soft information.

It is clear that the number of deletions, T − R ∼ TPd/b.
Therefore, the recursions require similar computational load
for both detectors, i.e., the number of log_add operations
equals O(T 2/b). Difference lies in the generation of the soft
information. As expected, complexity of symbol-level MAP
detection grows exponentially with b while the one for the bit-
level MAP detector only depends on the length of codeword,
i.e., T .

V. NUMERICAL EXAMPLES

In this section, we first provide several numerical results
of the approximation and upper/lower bounds on the capacity
of the elementary segmented deletion channels. Then we give
examples comparing synchronization algorithms along with
some results on the outer LDPC code design [21].

A. Examples for Capacity Results

In this subsection, some explicit results on the capacity
bounds are provided as a function of Pd and b. First of all,
using BAA, the largest value of b we can handle for the
calculation of Cd(b, 1) is 24, resulting in Cd(24, 1) = 19.65,
and therefore from (1), C ≤ 1− 4.35 Pd

b , ∀ b ≥ 24. The two
versions of upper bounds in Section III-B are compared in
Table II and Fig. 3. In Table II, we compute the upper bounds
in (1) and (2) for the case of 2 ≤ b ≤ 15. For the second
upper bound (2), since we could not obtain exact values of
Cd(2b, 1) when b > 12, we resort to (4). Fig. 3 compares
the capacity upper bound for b = 3, 7 and 15. As expected,
the improvement is more obvious as b decreases. Another
observation is that when b > 15, it makes no sense to use (2),
as the bound on Cd(2b, 1) becomes very loose.

We present Cest in (18) for different segment lengths
in Fig. 4. The result illustrates that for the same value of

TABLE II
CAPACITY UPPER BOUND COMPARISONS FOR b ≤ 15.

C ≤
b UB (1) UB (2)

2 1− 0.5Pd 1− 0.915Pd + 0.445P 2
d

3 1− 0.510Pd 1− 0.794Pd + 0.284P 2
d

4 1− 0.458Pd 1− 0.694Pd + 0.236P 2
d

5 1− 0.428Pd 1− 0.617Pd + 0.189P 2
d

6 1− 0.397Pd 1− 0.555Pd + 0.158P 2
d

7 1− 0.370Pd 1− 0.507Pd + 0.137P 2
d

8 1− 0.347Pd 1− 0.466Pd + 0.120P 2
d

9 1− 0.326Pd 1− 0.433Pd + 0.107P 2
d

10 1− 0.308Pd 1− 0.405Pd + 0.097P 2
d

11 1− 0.292Pd 1− 0.380Pd + 0.089P 2
d

12 1− 0.277Pd 1− 0.362Pd + 0.085P 2
d

13 1− 0.264Pd 1− 0.314Pd + 0.050P 2
d

14 1− 0.253Pd 1− 0.275Pd + 0.023P 2
d

15 1− 0.242Pd 1− 0.245Pd + 0.001943P 2
d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

bi
ts

/c
ha

nn
el

 u
se

P
d

UB (1)
UB (2)

b = 15

b = 3

b = 7

Fig. 3. Capacity upper bound comparisons for b = 3, 7, 15.

Pd/b, segmented deletion channels with a larger b offer a
higher capacity. Comparison of upper/lower bounds from
Section III-B and Cest is provided in Fig. 5 for b = 12.
It is clear that the lower bound remains tight up to around
Pd = 0.4 while the upper bound is quite loose. When
Pd/b = 0.08333, i.e., Pd = 1, every segment has deletion
errors, and the decoupling of different segments is possible
without any side information. As discussed before, the upper
bound gives the exact value of capacity and Cest exceeds
the capacity as given in Table III but it remains close to it.
We also observe that both the lower bound and Cest are not
monotonically decreasing and there is a “tail” like behavior
close to Pd = 1. It is not a surprising result, as the deletion rate
approaches unity, segment-level synchronization becomes less
critical and almost every segment has deletion errors. In this
case, a higher capacity may be achieved as the synchronization
errors become less and less important.

860 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

10
−2

10
−1

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95
bi

ts
/c

ha
nn

el
 u

se

P
d
/b

b = 2
b = 8
b = 12
b = 20

Fig. 4. Estimate of the segmented deletion channel capacity (Cest) for small
Pd/b.

10
−2

10
−1

0.7

0.75

0.8

0.85

0.9

0.95

1

P
d
/b

bi
ts

/c
ha

nn
el

 u
se

C
est

UB (1)
UB (2)
LB (5)

Fig. 5. Comparison of upper and lower bounds on the segmented deletion
channel capacity for b = 12.

B. Detection/Decoding Results

We first consider practical coding schemes with the aim of
confirming the performance gain over the existing techniques.
The only reported practical coding scheme is introduced in
[6], where for b = 8, the code rate is 0.448. This code is able
to correct all the possible synchronization errors when at most
one deletion error occurs per segment. Although codes with
higher rates are also provided which allow for some errors for
high deletion rates, we will not consider them here, since they
assume that some information generated from the transmitted
sequence, e.g., parity check bits, is known at the receiver via
a perfect side channel.

In Fig. 6, we compare the bit error (BER) performance
of several detectors with a single-pass decoding, i.e., MAP
detection for synchronization is executed only once. We adopt
a binary randomly picked LDPC code with a rate 0.78, length
4521 and insert the marker “01” every 15 LDPC-coded bits.
Obviously, the symbol-level MAP detection with iterative soft

TABLE III
COMPARISON OF CAPACITY BOUNDS.

b = 3 b = 12
Pd LB (5) Cest UB (1) LB (5) Cest UB (1)

0.001 0.99557 0.99576 0.99949 0.99876 0.99877 0.99972
0.01 0.96688 0.96874 0.99493 0.99039 0.99052 0.99721
0.05 0.87361 0.88292 0.97466 0.96179 0.96239 0.98608
0.1 0.78182 0.80045 0.99972 0.93223 0.93344 0.97217
0.2 0.63566 0.67292 0.89866 0.88247 0.88489 0.94434
0.3 0.52069 0.57659 0.84799 0.84051 0.84414 0.91652
0.5 0.35743 0.45059 0.74665 0.77326 0.77931 0.86086
0.75 0.26572 0.40546 0.61997 0.71728 0.72636 0.79130

1 0.38153 0.56785 0.49330 0.71319 0.72529 0.72173

0.015 0.02 0.025 0.03 0.035 0.04
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

P
d
/b

B
E

R

b = 1
b = 8, bit
b = 8, impro. bit
b = 8, sym.
b = 16, bit
b = 16, impro. bit
b = 16, sym.

Fig. 6. BER performance with different MAP detectors.

demapping [30] outperforms the other detectors. However for
large b, it becomes infeasible. One solution is to consider
only the M largest soft values among the 2b outputs as
done in greedy multiuser detection algorithm [31]. Another
observation is that the bit-level MAP detector for an i.i.d.
deletion channel [21] works well at low deletion rates. With
the same overall code rate R = 0.693 and under the single-
pass decoding assumption, the bit-level MAP detector for an
i.i.d. deletion channel provides almost the same performance
compared to the one discussed in Section IV-A for b = 4. This
is not a surprising result since the segmentation assumption
does not provide additional information to the detector due
to the limited number of deletions in this regime. Our final
comment is that when the segment length b is increased
for the same average bit deletion probability Pd/b, the error
probability is lower (which is parallel to the findings (e.g., in
terms of capacity bound results) in this paper).

C. LDPC Code Design and Examples

As also discussed in [21], the design of LDPC codes for
insertion/deletion channels can rely on utilizing the extrinsic
information transfer (EXIT) charts [32] to predict the detec-
tion/decoding performance when iterative decoding algorithm
is applied. For the MAP detectors described in Section IV,
let IV and IS be the mutual information between the LDPC-
coded bits and the corresponding input/output soft values (log-
likelihood ratios), respectively. It is shown in [32] that when

WANG et al.: CAPACITY BOUNDS AND CONCATENATED CODES OVER SEGMENTED DELETION CHANNELS 861

TABLE IV
EXAMPLE LDPC CODE PARAMETERS FOR SEGMENTED DELETION

CHANNELS.

b rM rC dc dv a

Pd = 0.1 8 0.9 0.9423 52 {2 3 71} {0.5667 0.425 0.0083}
Pd = 0.3 8 0.8333 0.8636 22 {2 3 42} {0.5284 0.458 0.0136}
Pd = 0.5 8 0.75 0.8 15 {2 3 16} {0.3936 0.576 0.0304}
Pd = 0.7 8 0.7143 0.75 12 {2 3 14} {0.3354 0.634 0.0306}
Pd = 0.9 8 0.7143 0.7 10 {2 3 12} {0.4301 0.522 0.0479}
Pd = 0.2 16 0.9 0.9444 54 {2 3 64} {0.6385 0.351 0.0105}
Pd = 0.4 16 0.8571 0.9062 32 {2 3 31} {0.5493 0.431 0.0197}
Pd = 0.6 16 0.8 0.875 24 {2 3 16} {0.4206 0.547 0.0324}
Pd = 0.8 16 0.7778 0.8421 19 {2 3 14} {0.395 0.569 0.036}
Pd = 1 16 0.75 0.8 15 {2 3 14} {0.3318 0.638 0.0302}

the detection EXIT chart, which describes the relationship
between output IS and input IV , is non-flat, i.e., each received
symbol depends on multiple transmitted symbols, LDPC code
design for this case is beneficial. For the segmented deletion
channel, since it is not memoryless, instead of using randomly
picked LDPC codes as in Fig. 6 or the ones optimized for the
AWGN channels (with a flat detection EXIT chart), specially
designed LDPC codes can provide a better performance.

Consider a check-regular LDPC code with constant check
node degree dc. Let I be the total number of different variable
node degrees of the LDPC code denoted by dv,i, i = 1, . . . , I
and ai be the fraction of variable nodes with degree dv,i.
The goal of code design for a fixed code rate rC is to find
the set of parameters ai, dv,i and dc which provide the best
detection/decoding performance.

Some optimized codes are listed in Table IV with an average
variable node degree of [32] d̄v = 3 and rM is the optimized
2-bit marker code rate obtained using a similar approach as
in [21]. In Fig. 7, the highest achievable code rates for the
concatenated coding scheme are plotted as a function of Pd for
b = 8. The solid line denotes the achievable rates when LDPC
codes from Table IV are used while the dashed line represents
the case for codes optimized for the AWGN channels. As the
deletion rate increases, the achievable rate drops from 0.84 to
0.446 bits/channel use. Compared to the codes in [6], we can
always achieve a higher code rate for Pd < 1 due to the more
sophisticated detector/decoder configuration and possibility of
arbitrarily low error probabilities (instead of no-errors). Also
included in the figure is the capacity lower bound in (5) which
shows that even though significantly improved code rates are
obtained by the specific designs over previously known codes
optimized for AWGN channels and over codes in [6], there is
room for further improvement.

To further illustrate the advantage of the designed codes,
we pick several codes from Table IV, each of length 10000,
and depict their error rate performance in Fig. 8 using the bit-
level synchronization algorithm over the segmented deletion
channel. Again, performance of LDPC codes optimized for the
AWGN channels are given in dashed lines (of the same rate
but different variable/check node distributions). Parameters of
Code 1, 2 and 3 for the segmented deletion channel are given
in the second, third and forth row of Table IV, and their
overall code rates are 0.719, 0.6 and 0.5337, respectively. It is
obvious that the specifically designed outer LDPC codes for
the segmented deletion channel offer a better performance. We
also observe that the concatenated coding scheme can achieve

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

bi
ts

/c
ha

nn
el

 u
se

LDPC for seg. deletion channel
LDPC for AWGN channel

Lower Bound in (5)

Fig. 7. Achievable rates as a function of Pd for different choices of outer
LDPC codes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

P
d

B
E

R

Code 1 AWGN
Code 1 Del.
Code 2 AWGN
Code 2 Del.
Code 3 AWGN
Code 3 Del.

Fig. 8. BER for several LDPC codes over segmented deletion channels.

a higher code rate when Pd

b gets smaller. We note, however,
that the results obtained are not very close to the capacity
bounds. For instance, if we consider an error rate of 10−3

as reliable communications, from Fig. 8, the corresponding
Pd for these three codes are 0.24, 0.44 and 0.6, while the
corresponding capacity lower bounds are 0.8127, 0.7152 and
0.6589, respectively. A difference of 0.1 bits/channel use exist
between the capacity lower bounds and the actual achieved
code rates with the practical channel coding approach, which
as also previously stated, indicates that there is certainly room
for significant improvement with more sophisticated practical
coding solutions.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have considered channels with synchro-
nization errors modeled by a bit deletion process with an addi-
tional segmentation assumption. We started with the argument
that such channels are information stable, and their channel
capacity exists. Then, we introduced several capacity upper
and lower bounds in an attempt to understand the channel

862 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

capacity behavior. The results indicate that when the deletion
probability is near zero or near unity (for each segment), the
upper and lower bounds behave similarly and the obtained
results are very close to the actual channel capacity. However,
there is a wide-range of deletion probabilities where they are
far apart, hence there is clearly more room for improvement
(in terms of obtaining tighter capacity bounds). In addition to
the information theoretic analysis of the channel, we have also
considered a practical channel coding approach. Specifically,
we used outer LDPC codes concatenated with inner marker
codes, and developed suitable channel detection algorithms
for this case. Different MAP based channel synchronization
algorithms operating at the bit level and at the symbol level
were introduced. Furthermore, we have compared complexity
of the two algorithms and designed specific LDPC codes for
segmented deletion channels which provide better decoding
performance than the ones optimized for AWGN channels.
Simulation results clearly show the advantages of the pro-
posed approach. In particular, for the entire range of deletion
probabilities less than unity, the proposed approach offers
a significantly larger transmission rate than the only other
alternative solution of the zero-error codes designed in [6].

APPENDIX A
PROOF OF LEMMA 1

Proof of Lemma 1: Define Dn to be an n-bit vector
that contains a 1 if and only if the corresponding bit in
Xn is deleted. We have H(Dn) = n

b (Pd log2 b + H(Pd)).
With this definition, the random process D is non-stationary
even though X is stationary and ergodic. In order to make it
stationary, we let the “first” segment of the channel start at a
random position which is uniformly chosen from {1, 2, . . . , b},
which does not affect the capacity. It is easy to deduce that
H(Y|Xn) = H(Dn)−H(Dn|Xn,Y). The exact evaluation
of the term H(Dn|Xn,Y) is troublesome; however, under the
condition that Pd/b is small, it can be bounded.

The following arguments follow similar steps as in [20],
which considers the case of i.i.d. deletions. Let D̂n be the
vector obtained by flipping “1”s in Dn for two cases. First,
when a particular run experiences deletion errors, which is
referred to as the error run, and the number of deletions
exceeds one, we flip all 1s in Dn which are associated with
that error run. Secondly, when different error runs span the
same segment, we flip all 1s in Dn which are associated with
these error runs. One example is given as follows. Suppose
we transmit a sequence 001 000 001 110 over a segmented
deletion channel with b = 3, and receive 01000110. Obviously,
one bit gets deleted from each segment resulting in a total
number of 24 possible realizations of D (one of the two
0’s gets deleted from the first segment, one of the three 0’s
gets deleted from the second segment, one of the two 0’s
gets deleted from the third segment, and one of the two
1’s gets deleted from the last segment). Since the third bit
run (five consecutive 0’s) have two deletion errors and the
forth bit run with only one error but share the same segment
with another error run, we assume an auxiliary channel that
generates 01000001110 and the corresponding D̂ can only
be either 100 000 000 000 or 010 000 000 000 with equal
probability. By doing so, we guarantee that every deletion

error from this auxiliary channel belongs to a bit run with
a single deletion and every bit from that run can be deleted
with an equal probability.

The process D̂ = f(D,X) is also stationary with P (D̂i =
1) being upper bounded by Pd/b. A lower bound on P (D̂i =
1) can be obtained as follows. Let l0 be the length of a bit
run which contains Xi and spans (j − m1)-th to (j + m2)-
th segments. When D̂i = 1, the (j −m1)-th to (j +m2)-th
segments will not experience deletion error except for the j-th
segment, to which Xi belongs. Also, any bit from a run which
starts from the (j +m2)-th segment or ends in the (j −m1)-
th segment will not be deleted. Let l1 and l2 be the lengths
of the run which ends in the (j − m1)-th segment and the
one which starts from the (j +m2)-th segment, respectively.
There is only one deletion error in these segments and it has
to be in the j-th segment. Therefore, considering the worst
case scenario and denoting the joint probability mass function
of pairs of run lengths with PL(·, ·), we have,

P (D̂i = 1)≥
∞∑

l1,l2=1

Pd

b
(1− Pd)

l0+l1+l2+4(b−1)PL(l1, l2)

≥ Pd

b
− (l0 + E[l1] + E[l2] + 4(b− 1))P 2

d . (30)

For any input process with a finite average run length, we can
write P (D̂i = 1) ∈ (Pd/b−K∗l0P 2

d , Pd/b), where K∗ < ∞
is a nonnegative integer.

With the above introduction of D̂ and letting Ŷ to be the
outcome of Xn corresponding to the deletion pattern D̂n,
it is clear that runs with length l = 1 do not contribute to
H

(
D̂n|Xn, Ŷ

)
. Furthermore, no run with more than one

deletion can contribute to H
(
D̂n|Xn, Ŷ

)
as they all have

been reversed. Therefore, only runs with length l ≥ 2 and one
deletion lead to a contribution of log2 l to H

(
D̂n|Xn, Ŷ

)
since the deleted bit is uniformly chosen, which is guaranteed
by the definition of D̂ and the channel model. Finally, we
conclude that H(D̂n|xn, ŷ) =

∑
r∈R

log2(lr), where R is
the set of runs on which deletions occur and lr is the
corresponding run length. Therefore, from [20], let L0 be
the bit perspective run length of the input sequence (for an
arbitrary transmitted bit, the length of the run it belongs to), for
any stationary ergodic process such that E[L0 log2 L0] < ∞,
we have

lim
n→∞

1

n
H

(
D̂n|Xn, Ŷ

)
=

Pd

b
E[log2 L0]− δ , (31)

where 0 ≤ δ ≤ K∗P 2
dE[L0 log2 L0].

Define Z = D ⊕ D̂, which represents the differ-
ence between D and D̂. The process Z is stationary
with z = P (Zi = 1) ≤ K∗E[L0]P

2
d . Note that

(Xn, Ŷ, D̂n) is a function of (Xn,Y,Dn,Zn), we have
|H(Xn,Y,Dn) − H(Xn, Ŷ, D̂n)| = |H(Xn,Y,Dn) −
H(Xn,Y,Dn,Zn)| = H(Zn|Xn,Y,Dn) ≤ H(Zn). Same
argument also holds for |H(Xn,Y)−H(Xn, Ŷ)|. Therefore
from [20], |H(Dn|Xn,Y) − H(D̂n|Xn, Ŷ)| ≤ 2H(Zn) ≤
2nH(z) Hence, the following equation follows,

H(Y|Xn) = H(Dn)−H(D̂n|Xn, Ŷ) + nδ′ , (32)

WANG et al.: CAPACITY BOUNDS AND CONCATENATED CODES OVER SEGMENTED DELETION CHANNELS 863

where −2H(z) ≤ δ′ ≤ δ+ 2H(z). Combining (31) and (32),
we obtain

lim
n→∞

1

n
H (Y|Xn) =

Pd

b
log2 b+

H(Pd)

b
−Pd

b
E[log2 L0]+δ′ .

(33)
For the input process X∗, it is easy to verify that
E[L0 log2 L0] < ∞. In this case, z = O(P 2

d), and therefore,
δ′ = O(P 2−ε

d) for any ε > 0. Hence, from (33), the lemma is
proved.

APPENDIX B
PROOF OF LEMMA 2

Proof of Lemma 2: Lemma 2 provides a lower bound on
limn→∞ 1

nH (Y|Xn). Based on the result given in (33), the
only work is to quantify the lower bounds on δ′ and E[log2 L0]
for any stationary ergodic process.

First of all, (32) states that δ′ ≥ −2H(z). From the proof
of Lemma 1, we have z = P (Zi = 1) ≤ K∗E[L0]P

2
d .

According to [20] (Lemma IV.3), for any stationary ergodic
process satisfying the condition H(X) > 1 − (

Pd

b

)1−γ

(γ > 0), the mean of the bit perspective run length E[L0] ≤
K ′(1 +

(
Pd

b

)1/2−ε′
L∗), K ′ < ∞ for any integer L∗. Com-

bining the upper bound on z and E[L0], we conclude that
H(z) ≤ K ′′P 2−ε

d (1+P
1/2
d L∗) ∀Pd < Pd,0 and consequently

δ′ ≥ −K ′P 2−ε
d (1 + P

1/2
d L∗) [20], where K ′ < ∞ is

a positive integer. Also from [20] (Lemma IV.3), we have
|A − E[log2 L0]| = O(P

1/2−ε
d log2 L

∗). Combining these
results with (33), the lemma is proved.

APPENDIX C
PROOF OF LEMMA 3

Proof of Lemma 3: In this case, define D̂n to be
generated by flipping the ones in Dn when the corresponding
error run spans two segments, which is different from the one
defined in the proof of Lemma 1. In order to obtain a stationary
process D̂, we still let the first segment of the input process
start at a random position which is uniformly chosen from
{1, 2, . . . , b}.

For any stationary and ergodic process X, the starting point
of a bit run is uniformly distributed within the segment2. Also,
since the positions of the segment boundaries are random
with a uniform distribution, the probability that the error run
with length l0 spans two segments is l0−1

b , if we restrict
the input process X ∈ Sb, i.e., l0 ≤ b. Therefore, it is
clear that P (D̂i = 1) = Pd

b (1 − l0−1
b). Also, with the

same definition of Z as in the proof of Lemma 1, we have
z = P (Zi = 1) ≤ b−2E[L0]. Following the same steps of
the proof in Lemma 1, we have, for any stationary ergodic
process X ∈ Sb such that E[L0 log2 L0] < ∞,

lim
n→∞

1

n
H

(
D̂n|Xn, Ŷ

)
=
Pd

b
E[log2 L0]− Pd

b2
E[(L0−1) log2 L0] .

(34)

2To see this, let us first consider the case of b = 2 and suppose that the
bit run starts at the first bit of the segment with probability p1 and at the last
bit of the segment with probability p2. Clearly, p1 = p1 · peven + p2 · podd,
where peven and podd are the probabilities of the run length being an even or
odd number, respectively. Since peven = 1−podd, we have p1 = p2 = 0.5.
Extension to the general case is straightforward and the detailed proof is
omitted.

Substituting (34) into (32), the following result appears under
the same condition,

lim
n→∞

1

n
H (Y|Xn) =

Pd

b
log2 b+

H(Pd)

b
−Pd

b
E[log2 L0]+δ′ ,

(35)
where −2H(z) ≤ δ′ ≤ δ + 2H(z), δ = b−2E[L0 log2 L0].

For the process X∗
b ∈ Sb, z ≤ b−2E[L0] = O(b−2),

and therefore, H(z) = O(b−2+ε). Since −2H(z) ≤ δ′ ≤
b−2E[L0 log2 L0]+2H(z) and it is easy to verify in this case
E[L0 log2 L0] < ∞, we conclude that δ′ = O(b−2+ε) for any
ε > 0. Hence, (16) is proved.

To show (15), we follow the same rationale in the proof
of of Lemma 2. Since z ≤ b−2E[L0] and for any stationary
ergodic process satisfying the condition H(X) > 1−(

Pd

b

)1−γ

(γ > 0), E[L0] ≤ κ′(1 +
(
Pd

b

)1/2−ε′
b) (let L∗ = b), we get

H(z) ≤ κ�b−2+ε(1 + b1/2) ∀b > b0. Using the conclusion
that |A − E[log2 L0]| = O(b−1/2+ε) [20] (Lemma IV.3), the
result follows.

REFERENCES

[1] R. L. White, R. M. H. New, and R. F. W. Pease, “Patterned media: a
viable route to 50 Gbit/in2 and up for magnetic recording?” IEEE Trans.
Magn., vol. 33, no. 1, pp. 990–995, Jan. 1997.

[2] M. Mitzenmacher, “A survey of results for deletion channels and related
synchronization channels,” Probability Surveys, pp. 1–33, June 2009.

[3] R. G. Gallager, “Sequential decoding for binary channels with noise and
synchronization errors,” MIT Lincoln Lab., Tech. Rep., Oct. 1961.

[4] M. C. Davey and D. J. Mackay, “Reliable communication over channels
with insertions, deletions and substitutions,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 687–698, Feb. 2001.

[5] M. Mitzenmacher, “Capacity bounds for sticky channels,” IEEE Trans.
Inf. Theory, vol. 54, no. 1, pp. 72–77, Jan. 2008.

[6] Z. Liu and M. Mitzenmacher, “Codes for deletions and insertion
channels with segmented errors,” IEEE Trans. Inf. Theory, vol. 56, no. 1,
pp. 224–232, Jan. 2010.

[7] A. Mazumdar and A. Barg, “Channels with intermittent errors,” in Proc.
2011 IEEE International Symp. Inf. Theory, pp. 1753–1757.

[8] L. Dolecek and V. Anantharam, “On communication over channels with
varying sampling rate,” in 2007 Inf. Theory Appl. Workshops (at UCSD).

[9] S. Diggavi and M. Grossglauser, “On information transmission over a
finite buffer channel,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1226–
1237, Mar. 2006.

[10] E. Drinea and M. Mitzenmacher, “On lower bounds for the capacity of
deletion channels,” IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4648–
4657, Oct. 2006.

[11] ——, “Improved lower bounds for the capacity of i.i.d. deletion and
duplication channels,” IEEE Trans. Inf. Theory, vol. 53, no. 8, pp. 2693–
2714, Aug. 2007.

[12] E. Drinea and A. Kirsch, “Directly lower bounding the information
capacity for channels with i.i.d. deletions and duplications,” IEEE Trans.
Inf. Theory, vol. 56, no. 1, pp. 86–102, Jan. 2010.

[13] D. Fertonani and T. M. Duman, “Novel bounds on the capacity of the
binary deletion channel,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp.
2753–2765, June 2010.

[14] A. R. Iyengar, P. H. Siegel, and J. K. Wolf, “Modeling and information
rates for synchronization error channels,” in Proc. 2011 IEEE Interna-
tional Symp. Inf. Theory, pp. 380–384.

[15] T. G. Swart and H. C. Ferreira, “Insertion/deletion correcting coding
schemes based on convolution coding,” IEEE Electron. Lett., vol. 38,
no. 16, pp. 871–873, Aug. 2002.

[16] N. J. A. Sloane, “On single-deletion-correcting codes,” in Codes De-
signs: Proc. Conf. Honoring Professor Dijen K. Ray-Chaudhuri Occa-
sion His 65th Birthday, pp. 273–291.

[17] L. Cheng and H. Ferreira, “Rate-compatible path-pruned convolutional
codes and their applications on channels with insertion, deletion and
substitution errors,” in Proc. 2005 IEEE Inf. Theory Workshop, pp. 20–
25.

[18] L. McAven and R. Safavi-Naini, “Classification of the deletion cor-
recting capabilities of Reed-Solomon codes of dimension 2 over prime
fields,” IEEE Trans. Inf. Theory, vol. 53, no. 6, pp. 2280–2294, June
2007.

864 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 3, MARCH 2013

[19] R. L. Dobrushin, “Shannon’s theorems for channels with synchroniza-
tion errors,” Problems Inf. Transmission, vol. 3, no. 4, pp. 11–26, 1967.

[20] Y. Kanoria and A. Montanari, “On the deletion channel with small
deletion probability,” in Proc. 2010 IEEE International Symp. Inf.
Theory, pp. 1002–1006.

[21] F. Wang, D. Fertonani, and T. M. Duman, “Symbol-level synchroniza-
tion and LDPC code design for insertion/deletion channels,” IEEE Trans.
Commun., vol. 59, no. 5, pp. 1287–1297, May 2011.

[22] T. T. Kadota, “On the information stability of stationary ergodic pro-
cesses,” SIAM J. Appl. Mathematics, vol. 26, no. 1, pp. 176–182, Jan.
1974.

[23] S. Verdu and T. Weissman, “The information lost in erasures,” IEEE
Trans. Inf. Theory, vol. 54, no. 11, pp. 5030–5058, Nov. 2008.

[24] S. Arimoto, “An algorithm for calculating the capacity of an arbitrary
discrete memoryless channel,” IEEE Trans. Inf. Theory, vol. 18, pp.
14–20, Jan. 1972.

[25] R. E. Blahut, “Computation of channel capacity and rate distortion
functions,” IEEE Trans. Inf. Theory, vol. 18, pp. 460–473, Jan. 1972.

[26] P. Jacquet and W. Szpankowski, “Entropy computations via analytic
depoissonization,” IEEE Trans. Inf. Theory, vol. 45, no. 4, pp. 1072–
1081, May 1999.

[27] H. Mercier, V. Bhargava, and V. Tarokh, “A survey of error-correcting
codes for channels with symbol synchronization errors,” IEEE Commun.
Surveys Tuts., vol. 12, no. 1, pp. 87–96, First Quarter 2010.

[28] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498–519,
Feb. 2001.

[29] L. R. Bahl and F. Jelinek, “Decoding for channels with insertions,
deletions, and substitutions with applications to speech recognition,”
IEEE Trans. Inf. Theory, vol. 21, pp. 404–411, July 1975.

[30] X. Li and J. A. Ritcey, “Bit-interleaved coded modulation with iterative
decoding,” IEEE Commun. Lett., vol. 1, no. 6, pp. 169–171, Nov. 1997.

[31] A. A. AlRustamani, A. D. Damnjanovic, and B. R. Vojcic, “Turbo
greedy multiuser detection,” IEEE J. Sel. Areas Commun., vol. 19, no. 8,
pp. 1638–1645, Aug. 2001.

[32] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE Trans. Com-
mun., vol. 52, no. 4, pp. 670–678, Apr. 2004.

Feng Wang received his B.S. degree from Southeast
University, Nanjing China, in 2005, the M.S. degree
from Michigan Technological University, Houghton,
in 2007, and Ph.D. degree from Arizona State Uni-
versity, Tempe, in 2012, respectively, all in electrical
engineering. He is currently with LitePoint Corp.,
Sunnyvale, CA. His research interests lie in the areas
of digital communications, particularly coding and
detection techniques, with application to digital stor-
age systems and wireless communication systems.

Tolga M. Duman (S’95-M’98-SM’03-F’11): Tolga
M. Duman is a Professor of Electrical and Electron-
ics Engineering Department at Bilkent University
in Turkey, and is on leave from the School of
ECEE at Arizona State University. He received the
B.S. degree from Bilkent University in Turkey in
1993, M.S. and Ph.D. degrees from Northeastern
University, Boston, in 1995 and 1998, respectively,
all in electrical engineering. Prior to joining Bilkent
University in September 2012, he has been with the
Electrical Engineering Department of Arizona State

University first as an Assistant Professor (1998-2004), then as an Associate
Professor (2004-2008), and starting August 2008 as a Professor. Dr. Duman’s
current research interests are in systems, with particular focus on communi-
cation and signal processing, including wireless and mobile communications,
coding/modulation, coding forwireless communications, data storage systems
and underwater acoustic communications.

Dr. Duman is a Fellow of IEEE, a recipient of the National Science
Foundation CAREER Award and IEEE Third Millennium medal. His pub-
lications include a book on MIMO Communications (by Wiley in 2007),
over 50 journal papers and over 100 conference papers. He served as an
editor for IEEE TRANSACTION ON WIRELESS COMMUNICATIONS (2003-
08), IEEE TRANSACTIONS ON COMMUNICATIONS (2007-2012) and IEEE
COMMUNICATIONS SURVEYS AND TUTORIALS (2002-07). He is currently
the coding and communication theory area editor for IEEE TRANSACTIONS
ON COMMUNICATIONS (2011-present) and an editor for Elsevier Physical
Communications Journal (2010-present).

Defne Aktas (S’96, M’03) received the B.S. degree
from Middle East Technical University, Ankara,
Turkey, in 1996, and the M.S. and the Ph.D. degrees
from The Ohio State University, Columbus, in 1998
and 2002, respectively, all in electrical engineering.
She is currently an Assistant Professor in the Depart-
ment of Electrical and Electronics Engineering at
Bilkent University, Ankara, Turkey. Before joining
Bilkent University, she was a Research Fellow at
The University of Melbourne, Melbourne, Australia
and a Postdoctoral Researcher at The Ohio State

University. Dr. Aktas is a recipient of the European Commission Marie Curie
Fellowship. Her research interests are in physical layer aspects of wireless
communication systems, with emphasis on coding and information theoretic
analysis of multiple input multiple output (MIMO) systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslonPro-Bold
 /ACaslonPro-BoldItalic
 /ACaslonPro-Italic
 /ACaslonPro-Regular
 /ACaslonPro-Semibold
 /ACaslonPro-SemiboldItalic
 /AdobeFangsongStd-Regular
 /AdobeHeitiStd-Regular
 /AdobeKaitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobeSongStd-Light
 /AGaramondPro-Bold
 /AGaramondPro-BoldItalic
 /AGaramondPro-Italic
 /AGaramondPro-Regular
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aharoni-Bold
 /Algerian
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BirchStd
 /BlackadderITC-Regular
 /BlackoakStd
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /BrushScriptStd
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ChaparralPro-Bold
 /ChaparralPro-BoldIt
 /ChaparralPro-Italic
 /ChaparralPro-Regular
 /CharlemagneStd-Bold
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CooperBlackStd
 /CooperBlackStd-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /Ebrima
 /Ebrima-Bold
 /EccentricStd
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /FangSong
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Gabriola
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GiddyupStd
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gisha
 /Gisha-Bold
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboStd
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /KozGoPro-Bold
 /KozGoPro-ExtraLight
 /KozGoPro-Heavy
 /KozGoPro-Light
 /KozGoPro-Medium
 /KozGoPro-Regular
 /KozMinPro-Bold
 /KozMinPro-ExtraLight
 /KozMinPro-Heavy
 /KozMinPro-Light
 /KozMinPro-Medium
 /KozMinPro-Regular
 /KristenITC-Regular
 /KunstlerScript
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /LatinWide
 /Leelawadee
 /Leelawadee-Bold
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMT-Bold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LithosPro-Black
 /LithosPro-Regular
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Mangal-Bold
 /Marlett
 /MaturaMTScriptCapitals
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MesquiteStd
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /MinionPro-Bold
 /MinionPro-BoldCn
 /MinionPro-BoldCnIt
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Medium
 /MinionPro-MediumIt
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /Mistral
 /Modern-Regular
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldCond
 /MyriadPro-BoldCondIt
 /MyriadPro-BoldIt
 /MyriadPro-Cond
 /MyriadPro-CondIt
 /MyriadPro-It
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Narkisim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /NuevaStd-BoldCond
 /NuevaStd-BoldCondItalic
 /NuevaStd-Cond
 /NuevaStd-CondItalic
 /Nyala-Regular
 /OCRAExtended
 /OCRAStd
 /OldEnglishTextMT
 /Onyx
 /OratorStd
 /OratorStd-Slanted
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlantagenetCherokee
 /Playbill
 /PMingLiU
 /PMingLiU-ExtB
 /PoorRichard-Regular
 /PoplarStd
 /PrestigeEliteStd-Bd
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RosewoodStd-Regular
 /SakkalMajalla
 /SakkalMajallaBold
 /ScriptMTBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-SemiBold
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /ShowcardGothic-Reg
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /SnapITC-Regular
 /Stencil
 /StencilStd
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TektonPro-Bold
 /TektonPro-BoldCond
 /TektonPro-BoldExt
 /TektonPro-BoldObl
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Vrinda-Bold
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

