
2356 IEEE COMMUNICATIONS LETTERS, VOL. 17, NO. 12, DECEMBER 2013

Design of LDPC Codes for Two-Way Relay Systems with
Physical-Layer Network Coding

A. Korhan Tanc, Member, IEEE, Tolga M. Duman, Fellow, IEEE, and Cihan Tepedelenlioglu, Member, IEEE

Abstract—This letter presents low-density parity-check
(LDPC) code design for two-way relay (TWR) systems employ-
ing physical-layer network coding (PLNC). We focus on relay
decoding, and propose an empirical density evolution method for
estimating the decoding threshold of the LDPC code ensemble.
We utilize the proposed method in conjunction with a random
walk optimization procedure to obtain good LDPC code degree
distributions. Numerical results demonstrate that the specifically
designed LDPC codes can attain improvements of about 0.3
dB over off-the-shelf LDPC codes (designed for point-to-point
additive white Gaussian noise channels), i.e., it is new code
designs are essential to optimize the performance of TWR
systems.

Index Terms—Density evolution, low-density parity-check
codes, network coding, relay channels.

I. INTRODUCTION

TWO-way relay (TWR) systems, where two users share
their packets through a common relay, have gained pop-

ularity since the invention of physical-layer network coding
(PLNC) [1]. With PLNC at the relay, the received packets
from the users are mapped to network coded packets. The
relay broadcasts the network coded packets to the users, and
each user decodes the other user’s packet by using its own
packet. Hence, the packet sharing is achieved in only two time
slots, and the system throughput increases significantly.

The performance of the TWR system with PLNC can be
improved by employing powerful channel codes. For instance,
in [2], the authors adopt repeat-accumulate (RA) codes, and
modify the belief propagation algorithm for relay decoding
accordingly. The extension of this work for low-density parity-
check (LDPC) codes and convolutional codes are proposed in
[3] and [4], respectively. The authors of [5] focus on the use of
convolutional and turbo codes, and analyze the performance
of relay decoding for various channel conditions. The use of
irregular repeat accumulate (IRA) codes is adopted in [6],
where the IRA code design based on extrinsic information
transfer (EXIT) is also given.

Due to the presence of multiuser interference [7], TWR
systems with PLNC cannot be recast as a point-to-point
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communication system. Hence it is natural to investigate the
suitability of using off-the-shelf codes (designed for point-to-
point links) in TWR systems with PLNC. With this motivation,
we study the optimization of LDPC code ensembles when
used in TWR systems with PLNC, and demonstrate that
improvements can be obtained over off-the-shelf codes. We
focus on relay decoding since its performance dominates the
performance of the entire TWR system.

In the analysis of relay decoding, we notice the asymmetry
in the equivalent channel, and enforce the symmetry by em-
ploying independent and identically distributed (i.i.d.) channel
adopters which are originally proposed for multilevel coding
and bit-interleaved coded modulation schemes based on LDPC
codes [8]. We then propose an empirical density evolution
method for estimating the signal-to-noise ratio (SNR) thresh-
old for relay decoding to be successful. We utilize the pro-
posed method in conjunction with a random walk optimization
procedure [9] to optimize the degree distributions of the LDPC
codes. The decoding threshold analysis and the simulations of
specific codes have shown that the newly designed rate 1/3
and rate 1/4 LDPC codes attain improvements of about 0.3 dB
with respect to the LDPC codes designed for additive white
Gaussian noise (AWGN) channels.

The rest of the letter is organized as follows. We provide
the TWR system model and the background on relay decoding
in Section II. We present i.i.d. channel adoption, empirical
density evolution and random walk optimization ideas in Sec-
tion III. In Section IV, we report on the designed LDPC code
ensembles along with their corresponding decoding thresholds.
We also present bit error rate (BER) results obtained by
specific codes picked from the designed code ensembles.
Finally, we conclude the letter with Section V.

II. SYSTEM MODEL

A. Two-Way Relay System

Let user A and user B share their binary message se-
quences sA = {sA(1), sA(2), . . . , sA(K)} and sB =
{sB(1), sB(2), . . . , sB(K)} through a common relay. At the
each user node, the message sequence is encoded by the same
binary LDPC code with rate K/N , then BPSK modulated
by mapping 0 to −1 and 1 to +1. The resulting symbol
sequences xA = {xA(1), xA(2), . . . , xA(N)} and xB =
{xB(1), xB(2), . . . , xB(N)} are amplified and transmitted
to the relay simultaneously. In the presence of AWGN, the
received signal at the relay is

yR(n) =
√
PA xA(n) +

√
PB xB(n) + w(n), (1)

where PA and PB are the received signal powers from
the users, and w(n) is the AWGN component, respectively.
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Using the received signal yR(n), the relay decodes XOR of
the two messages, sA(n) ⊕ sB(n). This binary message is
transmitted to the users after channel encoding, modulation
and amplification. At each user node, the user decodes the
other user’s message by using its own message. Since the
phase after relay decoding can be treated as point-to-point
communication, we focus only on relay decoding.
B. Decoding at the Relay

The relay decoding can be implemented in three different
ways. In simple relay decoding, the relay directly decodes
sA(n)⊕ sB(n) by using a single binary decoder. In separate
relay decoding, the relay first decodes sA(n) and sB(n) sep-
arately by using two binary decoders, then computes sA(n)⊕
sB(n). In generalized relay decoding, the relay decodes the
pair of sA(n) and sB(n) by using a single nonbinary decoder
prior to the computation of sA(n) ⊕ sB(n). We note that
generalized relay decoding offers a better performance than
the other alternatives [10], hence we focus on this decoding
technique throughout the letter.

The generalized relay decoder [10] employs four channel
probabilities which are given by

pch,0(n) = Pr{xA(n) = −1, xB(n) = −1 | yR(n)}

= α(n) exp

{
−
(
yR(n) +

√
PA +

√
PB

)2
N0

}
, (2a)

pch,1(n) = Pr{xA(n) = 1, xB(n) = −1 | yR(n)}

= α(n) exp

{
−
(
yR(n)−

√
PA +

√
PB

)2
N0

}
, (2b)

pch,2(n) = Pr{xA(n) = −1, xB(n) = 1 | yR(n)}

= α(n) exp

{
−
(
yR(n) +

√
PA −√

PB

)2
N0

}
, (2c)

pch,3(n) = Pr{xA(n) = 1, xB(n) = 1 | yR(n)}

= α(n) exp

{
−
(
yR(n)−

√
PA −√

PB

)2
N0

}
. (2d)

Here Pr is the probability operator, α(n) is the normalization
term which guarantees pch,0(n) + pch,1(n) + pch,2(n) +
pch,3(n) = 1, and N0/2 is the variance of w(n) 1. The factor
graph for the generalized relay decoder is developed by the
help of a virtual encoder. The virtual encoder and the BPSK
modulator jointly provide the rule for obtaining xA(n) and
xB(n) from sA(n) and sB(n). Hence, the nonbinary sum-
product algorithm with appropriate update functions for the
variable and check nodes is derived to calculate the a posteriori
probabilities:

papp,0(n) = Pr{sA(n) = 0, sB(n) = 0 |yR}, (3a)

papp,1(n) = Pr{sA(n) = 1, sB(n) = 0 |yR}, (3b)

papp,2(n) = Pr{sA(n) = 0, sB(n) = 1 |yR}, (3c)

papp,3(n) = Pr{sA(n) = 1, sB(n) = 1 |yR}, (3d)

where yR = {yR(1), yR(2), . . . , yR(N)}. Once the a poste-
riori probabilities are calculated, we can decode sA(n)⊕sB(n)

1When the received signal powers from the users are identical, the second
and third probability terms are clearly the same, and three distinct channel
probabilities are computed as in the arithmetic-sum relay decoding [3].

using the log-likelihood ratio (LLR) function:

Lapp(n) = log

{
papp,0(n) + papp,3(n)

papp,1(n) + papp,2(n)

}
. (4)

In the next section, we investigate the performance of the
generalized relay decoder with an emphasis on the LDPC code
design.

III. EMPIRICAL DENSITY EVOLUTION AND CODE DESIGN

Let us consider an irregular LDPC code ensemble with
degree distribution pair λ(z) and ρ(z):

λ(z) =

λmax∑
i=2

λiz
i−1, (5a)

ρ(z) =

ρmax∑
j=2

ρjz
j−1, (5b)

where λi and ρj are the fraction of edges connected to degree
i variable nodes and degree j check nodes, respectively. The
error correction capability of this ensemble can be evaluated
in terms of its decoding threshold. As the codeword length
tends to infinity, the ensemble exhibits a minimum SNR level
at which error-free decoding is expected, which is called the
decoding threshold [9]. For generalized relay decoding, the
decoding threshold can be calculated by the evolution of four
probability densities passed between variable and check nodes.
It is possible to simplify this calculation by assuming all-zero
codewords for both users, provided that the equivalent channel
is symmetric 2. However, it is easy to see that

Pr{yR(n) |xA(n) = −1, xB(n) = −1}
+Pr{yR(n) |xA(n) = 1, xB(n) = 1}
�= Pr{−yR(n) |xA(n) = 1, xB(n) = −1}
+Pr{−yR(n) |xA(n) = −1, xB(n) = 1} (6)

in general, i.e., the symmetry property is not satisfied.
One way to enforce the symmetry is to employ i.i.d.

channel adopters which are originally proposed for multilevel
coding and bit-interleaved coded modulation schemes based
on LDPC codes [8]. Here we adapt this approach to our
system as follows. Let tA = {tA(1), tA(2), . . . , tA(N)}
and tB = {tB(1), tB(2), . . . , tB(N)} be the i.i.d. random
sequences where each sample can take the value 1 or −1
with equal probabilities. Instead of transmitting xA(n) and
xB(n) from the user nodes, we assume that xA(n) tA(n)
and xB(n) tB(n) are transmitted, respectively. We calculate
the new yR(n), and replace

√
PA and

√
PB in (2a)-(2d) by√

PA tA(n) and
√
PB tB(n), respectively. The resulting chan-

nel probabilities are fed to the generalized relay decoder. By
this way, the equivalent channel is enforced to be symmetric,
and the decoding threshold calculation can be simplified by
the assumption of all-zero codewords being transmitted.

In order to perform the density evolution after i.i.d. channel
adoption, we first assume a regular LDPC code ensemble with
degree distribution pair λ(z) = zdv−1 and ρ(z) = zdc−1. We
consider the evolution of the densities by the use of Monte

2A close examination of the forthcoming (7b) and (8b) shows that the
symmetry property is not disturbed by the generalized relay decoder.
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Carlo simulations, as also stated in [11]. We use the vector
notation p(n) = {p0(n), p1(n), p2(n), p3(n)} to represent
the probability values for time instant n. Under the assumption
of very long N (as well as a cycle-free graph), the input-output
relation for the variable nodes is:

pout(n) = fv{pch(n), fv{pin(Πv{n, 1}), fv{. . . ,
fv{pin(Πv{n, dv − 2}), pin(Πv{n, dv − 1})}}}},(7a)

fv{p(n),p(ñ)} = β(n, ñ){p0(n)p0(ñ), p1(n)p1(ñ),
p2(n)p2(ñ), p3(n)p3(ñ)}. (7b)

Here, pch(n) denotes four channel probabilities at time instant
n, which are obtained after i.i.d. channel adoption. fv is
the variable node update function. Πv is a kind of inter-
leaving function which maps its input pair to an arbitrary
value of n according to the uniform distribution over the set
{1, 2, . . . , N}. We use β(n, ñ) term to normalize the sum
of elements in fv{p(n),p(ñ)} to 1. On the other hand, the
input-output relation for the check nodes is given by

pout(n) = fc{pin(Πc{n, 1}), fc{. . . ,
fc{pin(Πc{n, dc − 2}), pin(Πc{n, dc − 1})}}}, (8a)

fc{p(n),p(ñ)} = {p0(n)p0(ñ) + p1(n)p1(ñ)

+ p2(n)p2(ñ) + p3(n)p3(ñ), p0(n)p1(ñ)

+ p1(n)p0(ñ) + p2(n)p3(ñ) + p3(n)p2(ñ),

p0(n)p2(ñ) + p1(n)p3(ñ) + p2(n)p0(ñ)

+ p3(n)p1(ñ), p0(n)p3(ñ) + p1(n)p2(ñ)

+ p2(n)p1(ñ) + p3(n)p0(ñ)}, (8b)

where fc is the check node update function, and Πc is the
counterpart of Πv for the check nodes. At the variable nodes,
we also calculate the resulting a posteriori probabilities as

papp(n) = fv{pch(n), fv{pin(Πv{n, 1}), fv{. . . ,
fv{pin(Πv{n, dv − 1}), pin(Πv{n, dv})}}}}. (9)

Then using (4), the decoded bits and the decoding error
rate are calculated accordingly. By this way, we track the
realizations of four a posteriori probability densities, and
estimate the expected decoder performance in terms of its error
rate.

For irregular LDPC code ensembles, it is needed
to calculate the sequence of output probabilities
{pout(1), pout(2), . . . , pout(N)} regarding the degree
distribution pair, i.e., if the fraction of edges connected to
degree i nodes is λi (ρi), the number of time instants for
which degree i nodes generate the output probabilities is
Nλi (Nρi). The procedure also applies to the calculation of
a posteriori probabilities at the variable nodes.

The proposed empirical density evolution method can be
used to detect whether the decoding is successful or not. After
a large number of iterations, if the decoding error approaches
zero, the iterative decoding is deemed as successful, otherwise
a failure is declared. Hence, we can estimate the decoding
threshold which is the minimum SNR value that results in
success.

The aim of our code design is to find a degree distribution
pair with a low decoding threshold. This can be performed
by using an optimization algorithm based on a random walk

TABLE I
OPTIMIZED DEGREE DISTRIBUTION PAIRS.

D λ(z) ρ(z)

D1 0.306546z + 0.291810z2 + 0.061949z3 + 0.339695z9 z4

D2 0.398308z + 0.190931z2 + 0.196398z3 + 0.214363z9 z3

D3 0.382826z + 0.200868z2 + 0.416306z9 z4

D4 0.425322z + 0.215678z2 + 0.085866z3 + 0.273134z9 z3

TABLE II
ESTIMATED DECODING THRESHOLDS OF THE OPTIMIZED DEGREE

DISTRIBUTION PAIRS OVER THE TWR SYSTEM.

D1 D2 D3 D4

1.4 dB 0.7 dB 1.1 dB 0.4 dB

technique [9]. For a given code rate, we initialize the opti-
mization with a degree distribution pair which performs well
over an AWGN channel. We fix ρj , and perturb λi by a small
amount to improve the decoding threshold. If an improvement
is achieved, we set the corresponding λi as the new degree
distribution and continue these small perturbations in the same
manner. We terminate the procedure when certain number
of perturbations is reached. Because of its randomness, the
procedure can be repeated a few times to improve the results
further. We note that the presented optimization algorithm is
offline and the perturbation step can easily be performed using
convex programming methods.

IV. SIMULATION RESULTS

In this section, we first consider the TWR system with
PA/PB = 1, and design rate 1/3 and rate 1/4 LDPC code
ensembles. We limit ourselves to simple degree distribution
pairs and execute the degree distribution optimization routines
with N = 5 × 106. For a point-to-point AWGN channel, we
obtain degree distributions of rate 1/3 LDPC code ensemble
(D1), and rate 1/4 LDPC code ensemble (D2). These degree
distribution pairs are used to initialize the optimization algo-
rithm for generalized relay decoding. The resulting optimized
degree distribution pairs are denoted by D3 (for the rate
1/3 code) and D4 (for the rate 1/4 code). In Tables I and
II, we show the degree distribution pairs D1–D4, and the
corresponding decoding thresholds over the TWR system (as
a function of Eb/N0 per user), respectively.

In order to investigate the validity of our code design,
we also consider length N = 48000 explicit LDPC codes
C1, C2, C3 and C4 which are generated according to the
degree distribution pairs D1, D2, D3 and D4, respectively.
For the generation of the LDPC codes, we use IT++ software
with the less aggressive optimization option [12]. We notice
that the resulting LDPC codes are length-4 cycle free. With
generalized relay decoding and 200 maximum number of
iterations, the average BER results for the designed LDPC
codes are given in Figs. 1 and 2. At an average BER of
10−4, we observe that C3 and C4 perform about 0.9 dB
and 0.3 dB worse than their competitors over an AWGN
channel, respectively. However, these codes outperform their
competitors over the TWR system by about 0.3 dB. We also
observe that the estimated decoding thresholds given in Table
II are consistent with the average BER results given in Figs. 1
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Fig. 1. Simulation results for length 48000 and rate 1/3 LDPC codes over
AWGN channel and TWR system.
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Fig. 2. Simulation results for length 48000 and rate 1/4 LDPC codes over
AWGN channel and TWR system.

and 2. Our further BER simulations show that when the
codeword length is decreased to 9600, we still have the design
advantage, which is about 0.2 dB at an average BER of 10−4

for both code rates. During our investigations, we have also
experimented with rate 1/2 LDPC code ensembles. However,
for this code rate, we did not find any significant improvement
over LDPC codes designed for point-to-point AWGN links.
In other words, for the rate 1/2 coding case, LDPC codes
designed for point-to-point AWGN links appear to perform
well for two-way relaying as well.

Next we consider an unequal received signal power case
with PA/PB = 0.75, and design a rate 1/3 LDPC code
ensemble. We obtain the degree distribution pair λ(z) =
0.355449z+0.247800z2+0.000002z3+0.396749z9, ρ(z) =
z4 which has an estimated decoding threshold of 1.1 dB
average Eb/N0 per user. Meanwhile, the decoding thresholds
of degree distribution pairs D1 and D3 are estimated as 1.3 dB
and 1.4 dB, respectively. This brief experiment shows that the
design advantage obtained over point-to-point codes depends
on the received signal powers, and new code designs may also
be needed when the received signal powers are not equal.

Finally we would like to compare the performances of C1
and C3 with that of length 98304 and rate 1/3 IRA code
designed in [6]. For the TWR system with PA/PB = 1,
the IRA code requires more than 2.0 dB Eb/N0 per user
to achieve an average BER of 10−4. On the other hand, C1
and C3 require about 1.7 dB and 1.4 dB Eb/N0 per user
for the same error level, respectively. This is a significant
improvement which comes at the cost of increased encoding
complexity.

V. CONCLUSIONS

In this letter, we address the design of LDPC codes for
TWR systems with PLNC. We propose an empirical density
evolution method for estimating the decoding threshold for
the generalized relay decoder, and optimize the degree dis-
tributions by using an optimization routine based on random
walk. The decoding threshold analysis and the simulations of
specific codes have shown that the newly designed rate 1/3
and rate 1/4 LDPC codes attain improvements of about 0.3 dB
with respect to the LDPC codes designed for AWGN channels.
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