53 research outputs found

    A combined continuous-discontinuous finite element method for convection-diffusion problems

    Get PDF
    Discontinuous Galerkin (DGM) method combines the advantages of stability of finite volume method and the accuracy of continuous finite element method (FEIVI). Applications of the DGM are particularly valuable where the solution presents high-gradients or discontinuities, such as boundary layers and shock problems. A disadvantage of the DGM is the higher computational cost when comparing to classic finite element method, due to the increased number of degrees of freedom. With this motivation, in this paper we explore the idea of combining continuous and discontinuous Galerkin formulations for the simulation of convection-diffusion problems. The computational domain is decomposed into two parts. In one region the solution is supposed to be smooth, and the traditional continuous finite element method is applied. On the other hand, where steep gradients are expected, we use a, discontinuous Galerkin formulation. This paper presents numerical results for the combined FEM/DGM method applied to convection-diffusion problems.4322924

    Electronic Structures of Quantum Dots and the Ultimate Resolution of Integers

    Full text link
    The orbital angular momentum L as an integer can be ultimately factorized as a product of prime numbers. We show here a close relation between the resolution of L and the classification of quantum states of an N-electron 2-dimensional system. In this scheme, the states are in essence classified into different types according to the m(k)-accessibility, namely the ability to get access to symmetric geometric configurations. The m(k)-accessibility is an universal concept underlying all kinds of 2-dimensional systems with a center. Numerical calculations have been performed to reveal the electronic structures of the states of the dots with 9 and 19 electrons,respectively. This paper supports the Laughlin wave finction and the composite fermion model from the aspect of symmetry.Comment: Two figure

    Papua New Guinea: a potential refuge for threatened Indo–Pacific river sharks and sawfishes

    Get PDF
    The conservation of threatened elasmobranchs in tropical regions is challenging due to high local reliance on aquatic and marine resources. Due primarily to fishing pressure, river sharks (Glyphis) and sawfishes (Pristidae) have experienced large population declines in the Indo-Pacific. Papua New Guinea (PNG) may offer a refuge for these species, as human population density is low, and river shark and sawfish populations are thought to persist. However, few data are available on these species in PNG, and risk posed by small-scale fishers is poorly understood. This study observed elasmobranch catches in small-scale fisheries in riverine and coastal environments in the East Sepik (northern region), Gulf, and Western Provinces (southern region) of PNG. Surveys were conducted over a period of weeks to months in each region, during the dry season across seven field trips from 2017 to 2020. We observed a total of 783 elasmobranchs encompassing 38 species from 10 families. River sharks made up 29.4% of observations in the southern region, while sawfishes made up 14.8 and 20.3% in the northern and southern regions, respectively. River sharks were commonly caught by small-scale fishers in lower riverine environments in southern PNG, while sawfishes were generally less common and mainly observed through dried rostra. The primary threat to river shark and sawfish populations is their capture by small-scale fishers targeting teleosts for swim bladder. Persisting populations of river sharks and sawfishes indicate that PNG is the second known nation with viable populations of multiple species in the Indo-Pacific. However, populations are declining or at high risk of decline, and fisheries management and conservation are required to realize the potential of PNG as a long-term refuge

    Integrating complementary methods to improve diet analysis in fishery-targeted species

    Get PDF
    Developing efficient, reliable, cost-effective ways to identify diet is required to understand trophic ecology in complex ecosystems and improve food web models. A combination of techniques, each varying in their ability to provide robust, spatially and temporally explicit information can be applied to clarify diet data for ecological research. This study applied an integrative analysis of a fishery-targeted species group—Plectropomus spp. in the central Great Barrier Reef, Australia, by comparing three diet-identification approaches. Visual stomach content analysis provided poor identification with ~14% of stomachs sampled resulting in identification to family or lower. A molecular approach was successful with prey from ~80% of stomachs identified to genus or species, often with several unique prey in a stomach. Stable isotope mixing models utilizing experimentally derived assimilation data, identified similar prey as the molecular technique but at broader temporal scales, particularly when prior diet information was incorporated. Overall, Caesionidae and Pomacentridae were the most abundant prey families (\u3e50% prey contribution) for all Plectropomus spp., highlighting the importance of planktivorous prey. Less abundant prey categories differed among species/color phases indicating possible niche segregation. This study is one of the first to demonstrate the extent of taxonomic resolution provided by molecular techniques, and, like other studies, illustrates that temporal investigations of dietary patterns are more accessible in combination with stable isotopes. The consumption of mainly planktivorous prey within this species group has important implications within coral reef food webs and provides cautionary information regarding the effects that changing resources could have in reef ecosystems

    Integrating complementary methods to improve diet analysis in fishery‐targeted species

    Get PDF
    Developing efficient, reliable, cost‐effective ways to identify diet is required to understand trophic ecology in complex ecosystems and improve food web models. A combination of techniques, each varying in their ability to provide robust, spatially and temporally explicit information can be applied to clarify diet data for ecological research. This study applied an integrative analysis of a fishery‐targeted species group—Plectropomus spp. in the central Great Barrier Reef, Australia, by comparing three diet‐identification approaches. Visual stomach content analysis provided poor identification with ~14% of stomachs sampled resulting in identification to family or lower. A molecular approach was successful with prey from ~80% of stomachs identified to genus or species, often with several unique prey in a stomach. Stable isotope mixing models utilizing experimentally derived assimilation data, identified similar prey as the molecular technique but at broader temporal scales, particularly when prior diet information was incorporated. Overall, Caesionidae and Pomacentridae were the most abundant prey families (>50% prey contribution) for all Plectropomus spp., highlighting the importance of planktivorous prey. Less abundant prey categories differed among species/color phases indicating possible niche segregation. This study is one of the first to demonstrate the extent of taxonomic resolution provided by molecular techniques, and, like other studies, illustrates that temporal investigations of dietary patterns are more accessible in combination with stable isotopes. The consumption of mainly planktivorous prey within this species group has important implications within coral reef food webs and provides cautionary information regarding the effects that changing resources could have in reef ecosystems

    Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)

    Get PDF
    Accurate projections of the evolution of ice sheets in a changing climate require a fine mesh/grid resolution in ice sheet models to correctly capture fundamental physical processes, such as the evolution of the grounding line, the region where grounded ice starts to float. The evolution of the grounding line indeed plays a major role in ice sheet dynamics, as it is a fundamental control on marine ice sheet stability. Numerical modeling of a grounding line requires significant computational resources since the accuracy of its position depends on grid or mesh resolution. A technique that improves accuracy with reduced computational cost is the adaptive mesh refinement (AMR) approach. We present here the implementation of the AMR technique in the finite element Ice Sheet System Model (ISSM) to simulate grounding line dynamics under two different benchmarks: MISMIP3d and MISMIP+. We test different refinement criteria: (a) distance around the grounding line, (b) a posteriori error estimator, the Zienkiewicz–Zhu (ZZ) error estimator, and (c) different combinations of (a) and (b). In both benchmarks, the ZZ error estimator presents high values around the grounding line. In the MISMIP+ setup, this estimator also presents high values in the grounded part of the ice sheet, following the complex shape of the bedrock geometry. The ZZ estimator helps guide the refinement procedure such that AMR performance is improved. Our results show that computational time with AMR depends on the required accuracy, but in all cases, it is significantly shorter than for uniformly refined meshes. We conclude that AMR without an associated error estimator should be avoided, especially for real glaciers that have a complex bed geometry.</p

    Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels

    Get PDF
    Different environmental factors could induce epigenetic changes, which are likely involved in the biological invasion process. Some of these factors are driven by humans as, for example, the pollution and deliberate or accidental introductions and others are due to natural conditions such as salinity. In this study, we have analysed the relationship between different stress factors: time in the new location, pollution and salinity with the methylation changes that could be involved in the invasive species tolerance to new environments. For this purpose, we have analysed two different mussels’ species, reciprocally introduced in antipode areas: the Mediterranean blue mussel Mytilus galloprovincialis and the New Zealand pygmy mussel Xenostrobus securis, widely recognized invaders outside their native distribution ranges. The demetylathion was higher in more stressed population, supporting the idea of epigenetic is involved in plasticity process. These results can open a new management protocols, using the epigenetic signals as potential pollution monitoring tool. We could use these epigenetic marks to recognise the invasive status in a population and determine potential biopollutants

    Boolean dynamics revisited through feedback interconnections

    Get PDF
    Boolean models of physical or biological systems describe the global dynamics of the system and their attractors typically represent asymptotic behaviors. In the case of large networks composed of several modules, it may be difficult to identify all the attractors. To explore Boolean dynamics from a novel viewpoint, we will analyse the dynamics emerging from the composition of two known Boolean modules. The state transition graphs and attractors for each of the modules can be combined to construct a new asymptotic graph which will (1) provide a reliable method for attractor computation with partial information; (2) illustrate the differences in dynamical behavior induced by the updating strategy (asynchronous, synchronous, or mixed); and (3) show the inherited organization/structure of the original network’s state transition graph.publishe

    Cooperative development of logical modelling standards and tools with CoLoMoTo.

    Get PDF
    The identification of large regulatory and signalling networks involved in the control of crucial cellular processes calls for proper modelling approaches. Indeed, models can help elucidate properties of these networks, understand their behaviour and provide (testable) predictions by performing in silico experiments. In this context, qualitative, logical frameworks have emerged as relevant approaches, as demonstrated by a growing number of published models, along with new methodologies and software tools. This productive activity now requires a concerted effort to ensure model reusability and interoperability between tools. Following an outline of the logical modelling framework, we present the most important achievements of the Consortium for Logical Models and Tools, along with future objectives. Our aim is to advertise this open community, which welcomes contributions from all researchers interested in logical modelling or in related mathematical and computational developments
    • 

    corecore