539 research outputs found

    The evolution of the disc variability along the hard state of the black hole transient GX 339-4

    Get PDF
    We report on the analysis of hard-state power spectral density function (PSD) of GX 339-4 down to the soft X-ray band, where the disc significantly contributes to the total emission. At any luminosity probed, the disc in the hard state is intrinsically more variable than in the soft state. However, the fast decrease of disc variability as a function of luminosity, combined with the increase of disc intensity, causes a net drop of fractional variability at high luminosities and low energies, which reminds the well-known behaviour of disc-dominated energy bands in the soft state. The peak-frequency of the high-frequency Lorentzian (likely corresponding to the high-frequency break seen in active galactic nuclei, AGN) scales with luminosity, but we do not find evidence for a linear scaling. In addition, we observe that this characteristic frequency is energy-dependent. We find that the normalization of the PSD at the peak of the high-frequency Lorentzian decreases with luminosity at all energies, though in the soft band this trend is steeper. Together with the frequency shift, this yields quasi-constant high frequency (5-20 Hz) fractional rms at high energies, with less than 10 percent scatter. This reinforces previous claims suggesting that the high frequency PSD solely scales with BH mass. On the other hand, this constancy breaks down in the soft band (where the scatter increases to ~30 percent). This is a consequence of the additional contribution from the disc component, and resembles the behaviour of optical variability in AGN.Comment: 12 pages, 8 figures, accepted for publication in MNRA

    Tracing the reverberation lag in the hard state of black hole X-ray binaries

    Get PDF
    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous RXTE observations to obtain broad-band energy coverage of both the disc and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability signal-to-noise ratio (e.g. typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (~0.05-9 Hz) we observe the hard lags intrinsic to the power law component, already well-known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disc variability. At low-frequencies (long time scales) the disc component always leads the power law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high-frequencies (short time scales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disc-fraction increase. This suggests that the distance between the X-ray source and the region of the optically-thick disc where reprocessing occurs, gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disc truncation.Comment: 15 pages, 9 figures, 2 tables, accepted for publication in Ap

    The very faint hard state of the persistent neutron star X-ray binary SLX 1737-282 near the Galactic centre

    Get PDF
    We report on a detailed study of the spectral and temporal properties of the neutron star low mass X-ray binary SLX 1737-282, which is located only ~1degr away from Sgr A. The system is expected to have a short orbital period, even within the ultra-compact regime, given its persistent nature at low X-ray luminosities and the long duration thermonuclear burst that it has displayed. We have analysed a Suzaku (18 ks) observation and an XMM-Newton (39 ks) observation taken 7 years apart. We infer (0.5-10 keV) X-ray luminosities in the range 3-6 x10^35erg s-1, in agreement with previous findings. The spectra are well described by a relatively cool (kTbb = 0.5 keV) black body component plus a Comptonized emission component with {\Gamma} ~1.5-1.7. These values are consistent with the source being in a faint hard state, as confirmed by the ~ 20 per cent fractional root mean square amplitude of the fast variability (0.1 - 7 Hz) inferred from the XMM-Newton data. The electron temperature of the corona is >7 keV for the Suzaku observation, but it is measured to be as low as ~2 keV in the XMM-Newton data at higher flux. The latter is significantly lower than expected for systems in the hard state. We searched for X-ray pulsations and imposed an upper limit to their semi-amplitude of 2 per cent (0.001 - 7 Hz). Finally, we investigated the origin of the low frequency variability emission present in the XMM-Newton data and ruled out an absorption dip origin. This constraint the orbital inclination of the system to 65 degr unless the orbital period is longer than 11 hr (i.e. the length of the XMM-Newton observation).Comment: 7 pages, 4 figures, 1 table. Accepted for publication in MNRA

    NuSTAR + XMM-Newton monitoring of the neutron star transient AX J1745.6-2901

    Get PDF
    AX J1745.6-2901 is a high-inclination (eclipsing) transient neutron star (NS) Low Mass X-ray Binary (LMXB) showcasing intense ionised Fe K absorption. We present here the analysis of 11 XMM-Newton and 15 NuSTAR new data-sets (obtained between 2013-2016), therefore tripling the number of observations of AX J1745.6-2901 in outburst. Thanks to simultaneous XMM-Newton and NuSTAR spectra, we greatly improve on the fitting of the X-ray continuum. During the soft state the emission can be described by a disk black body (kT1.11.2kT\sim1.1-1.2 keV and inner disc radius rDBB14r_{DBB}\sim14 km), plus hot (kT2.23.0kT\sim2.2-3.0 keV) black body radiation with a small emitting radius (rBB0.50.8r_{BB}\sim0.5-0.8 km) likely associated with the boundary layer or NS surface, plus a faint Comptonisation component. Imprinted on the spectra are clear absorption features created by both neutral and ionised matter. Additionally, positive residuals suggestive of an emission Fe Kα\alpha disc line and consistent with relativistic ionised reflection are present during the soft state, while such residuals are not significant during the hard state. The hard state spectra are characterised by a hard (Γ1.92.1\Gamma\sim1.9-2.1) power law, showing no evidence for a high energy cut off (kTe>60140kT_e>60-140 keV) and implying a small optical depth (τ<1.6\tau<1.6). The new observations confirm the previously witnessed trend of exhibiting strong Fe K absorption in the soft state, that significantly weakens during the hard state. Optical (GROND) and radio (GMRT) observations suggest for AX J1745.6-2901 a standard broad band SED as typically observed in accreting neutron stars.Comment: Accepted for publication in MNRA

    Fifteen years of XMM-Newton and Chandra monitoring of Sgr A*: Evidence for a recent increase in the bright flaring rate

    Get PDF
    We present a study of the X-ray flaring activity of Sgr A* during all the 150 XMM-Newton and Chandra observations pointed at the Milky Way center over the last 15 years. This includes the latest XMM-Newton and Chandra campaigns devoted to monitoring the closest approach of the very red Br-Gamma emitting object called G2. The entire dataset analysed extends from September 1999 through November 2014. We employed a Bayesian block analysis to investigate any possible variations in the characteristics (frequency, energetics, peak intensity, duration) of the flaring events that Sgr A* has exhibited since their discovery in 2001. We observe that the total bright-or-very bright flare luminosity of Sgr A* increased between 2013-2014 by a factor of 2-3 (~3.5 sigma significance). We also observe an increase (~99.9% significance) from 0.27+-0.04 to 2.5+-1.0 day^-1 of the bright-or-very bright flaring rate of Sgr A*, starting in late summer 2014, which happens to be about six months after G2's peri-center passage. This might indicate that clustering is a general property of bright flares and that it is associated with a stationary noise process producing flares not uniformly distributed in time (similar to what is observed in other quiescent black holes). If so, the variation in flaring properties would be revealed only now because of the increased monitoring frequency. Alternatively, this may be the first sign of an excess accretion activity induced by the close passage of G2. More observations are necessary to distinguish between these two hypotheses.Comment: Accepted for publication in MNRA

    A decision cognizant Kullback-Leibler divergence

    Get PDF
    In decision making systems involving multiple classifiers there is the need to assess classifier (in)congruence, that is to gauge the degree of agreement between their outputs. A commonly used measure for this purpose is the Kullback–Leibler (KL) divergence. We propose a variant of the KL divergence, named decision cognizant Kullback–Leibler divergence (DC-KL), to reduce the contribution of the minority classes, which obscure the true degree of classifier incongruence. We investigate the properties of the novel divergence measure analytically and by simulation studies. The proposed measure is demonstrated to be more robust to minority class clutter. Its sensitivity to estimation noise is also shown to be considerably lower than that of the classical KL divergence. These properties render the DC-KL divergence a much better statistic for discriminating between classifier congruence and incongruence in pattern recognition systems

    The inner flow geometry in MAXI J1820+070 during hard and hard-intermediate states

    Get PDF
    [Abridged] Context: We present a systematic X-ray spectral-timing study of the recently discovered, exceptionally bright black hole X-ray binary system MAXI J1820+070. Our analysis focuses on the first part of the 2018 outburst, covering the rise throughout the hard state, the bright hard and hard-intermediate states, and the transition to the soft-intermediate state. Aims: We address the issue of constraining the geometry of the innermost accretion flow and its evolution throughout an outburst. Methods: We employed two independent X-ray spectral-timing methods applied to the NICER data of MAXI J1820+070. We first identified and tracked the evolution of a characteristic frequency of soft X-ray reverberation lags. Then, we studied the spectral evolution of the quasi-thermal component responsible for the observed thermal reverberation lags. Results: The frequency of thermal reverberation lags steadily increases throughout most of the outburst, implying that the relative distance between the X-ray source and the disc decreases as the source softens. However, near transition this evolution breaks, showing a sudden increase (decrease) of lag amplitude (frequency). The evolution of the quasi-thermal component in high-frequency covariance spectra is consistent with a steady decrease of the inner radius of the disc as the source softens. Conclusions: The behaviour of thermal reverberation lags near transition might be related to relativistic plasma ejections detected at radio wavelengths later in the outburst, possibly representing the precursor to such events. Throughout most of the hard and hard-intermediate states the disc is consistent with being truncated (with an inner radius Rin>10RgR_{\rm in}>\sim 10 R_{\rm g}), reaching close to the innermost stable circular orbit only near transition.Comment: Submitted for publication in Astronomy & Astrophysic

    1H0707-495 in 2011: An X-ray source within a gravitational radius of the event horizon

    Get PDF
    The Narrow Line Seyfert 1 Galaxy 1H0707-495 went in to a low state from 2010 December to 2011 February, discovered by a monitoring campaign using the X-Ray Telescope on the Swift satellite. We triggered a 100 ks XMM-Newton observation of the source in 2011 January, revealing the source to have dropped by a factor of ten in the soft band, below 1 keV, and a factor of 2 at 5 keV, compared with a long observation in 2008. The sharp spectral drop in the source usually seen around 7 keV now extends to lower energies, below 6 keV in our frame. The 2011 spectrum is well fit by a relativistically-blurred reflection spectrum similar to that which fits the 2008 data, except that the emission is now concentrated solely to the central part of the accretion disc. The irradiating source must lie within 1 gravitational radius of the event horizon of the black hole, which spins rapidly. Alternative models are briefly considered but none has any simple physical interpretation.Comment: 9 pages, 19 figures, MNRAS in pres

    Long XMM observation of the Narrow-Line Seyfert 1 galaxy IRAS13224-3809: rapid variability, high spin and a soft lag

    Get PDF
    Results are presented from a 500ks long XMM-Newton observation of the Narrow-Line Seyfert 1 galaxy IRAS13224-3809. The source is rapidly variable on timescales down to a few 100s. The spectrum shows strong broad Fe-K and L emission features which are interpreted as arising from reflection from the inner parts of an accretion disc around a rapidly spinning black hole. Assuming a power-law emissivity for the reflected flux and that the innermost radius corresponds to the innermost stable circular orbit, the black hole spin is measured to be 0.988 with a statistical precision better than one per cent. Systematic uncertainties are discussed. A soft X-ray lag of 100s confirms this scenario. The bulk of the power-law continuum source is located at a radius of 2-3 gravitational radii.Comment: 7 pages, 14 figures, submitted to MNRA
    corecore