1,283 research outputs found

    Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program II. Activity and radial velocity

    Full text link
    Due to their low mass and luminosity, M dwarfs are ideal targets if one hopes to find low-mass planets similar to Earth by using the radial velocity (RV) method. However, stellar magnetic cycles could add noise or even mimic the RV signal of a long-period companion. Following our previous work that studied the correlation between activity cycles and long-term RV variations for K dwarfs we now expand that research to the lower-end of the main sequence. Our objective is to detect any correlations between long-term activity variations and the observed RV of a sample of M dwarfs. We used a sample of 27 M-dwarfs with a median observational timespan of 5.9 years. The cross-correlation function (CCF) with its parameters RV, bisector inverse slope (BIS), full-width-at-half- maximum (FWHM) and contrast have been computed from the HARPS spectrum. The activity index have been derived using the Na I D doublet. These parameters were compared with the activity level of the stars to search for correlations. We detected RV variations up to ~5 m/s that we can attribute to activity cycle effects. However, only 36% of the stars with long-term activity variability appear to have their RV affected by magnetic cycles, on the typical timescale of ~6 years. Therefore, we suggest a careful analysis of activity data when searching for extrasolar planets using long-timespan RV data.Comment: 20 pages, 12 figures, 3 tables, accepted for publication in Astronomy and Astophysic

    Understanding the 8 micron vs. Pa-alpha relationship on sub-arcsecond scales in Luminous Infrared Galaxies

    Get PDF
    This work explores in detail the relation between the 8 micron and the Pa-alpha emissions for 122 HII regions identified in a sample of 10 low-z LIRGs with nearly constant metallicity (12 + log (O/H) ~ 8.8). We use Gemini/T-ReCS high-spatial resolution (<~ 0.4" ~ 120 pc for the average distance of 60 Mpc of our sample) mid-infrared imaging (at 8.7 micron or 10.3 micron) together with HST/NICMOS continuum and Pa-alpha images. The LIRG HII regions extend the L_8micron vs. L_Pa-alpha relation found for HII knots in the high-metallicity SINGS galaxies by about two orders of magnitude to higher luminosities. Since the metallicity of the LIRG sample is nearly constant, we can rule out this effect as a cause for the scatter seen in the relationship. In turn, it is attributed to two effects: age and PAH features. The L_8micron/L_Pa-alpha ratio, which varies by a factor of ten for the LIRG HII regions, is reproduced by a model with instantaneous star formation and ages ranging from ~ 4 to 7.5 Myr. The remaining dispersion around the model predictions for a given age is probably due to differential contributions of the PAH features (the 8.6 micron, in our case) to the 8 micron emission from galaxy to galaxy.Comment: 16 pages, 9 figures, accepted for publication in ApJ; paper with full-resolution figures can be found at: http://damir.iem.csic.es/extragalactic

    Spitzer IRS Spectral Mapping of the Toomre Sequence: Spatial Variations of PAH, Gas, and Dust Properties in Nearby Major Mergers

    Get PDF
    We have mapped the key mid-IR diagnostics in eight major merger systems of the Toomre Sequence (NGC4676, NGC7592, NGC6621, NGC2623, NGC6240, NGC520, NGC3921, and NGC7252) using the Spitzer Infrared Spectrograph (IRS). With these maps, we explore the variation of the ionized-gas, PAH, and warm-gas (H_2) properties across the sequence and within the galaxies. While the global PAH interband strength and ionized gas flux ratios ([Ne III]/[Ne II]) are similar to those of normal star forming galaxies, the distribution of the spatially resolved PAH and fine structure line flux ratios is significant different from one system to the other. Rather than a constant H_2/PAH flux ratio, we find that the relation between the H_2 and PAH fluxes is characterized by a power law with a roughly constant exponent (0.61+/-0.05) over all merger components and spatial scales. While following the same power law on local scales, three galaxies have a factor of ten larger integrated (i.e. global) H_2/PAH flux ratio than the rest of the sample, even larger than what it is in most nearby AGNs. These findings suggest a common dominant excitation mechanism for H_2 emission over a large range of global H_2/PAH flux ratios in major mergers. Early merger systems show a different distribution between the cold (CO J=1-0) and warm (H_2) molecular gas component, which is likely due to the merger interaction. Strong evidence for buried star formation in the overlap region of the merging galaxies is found in two merger systems (NGC6621 and NGC7592) as seen in the PAH, [Ne II], [Ne III], and warm gas line emission, but with no apparent corresponding CO (J=1-0) emission. Our findings also demonstrate that the variations of the physical conditions within a merger are much larger than any systematic trends along the Toomre Sequence.Comment: 35 pages, accepted for publication in ApJ

    Massive Star Cluster Formation and Destruction in Luminous Infrared Galaxies in GOALS

    Get PDF
    We present the results of a {\it Hubble Space Telescope} ACS/HRC FUV, ACS/WFC optical study into the cluster populations of a sample of 22 Luminous Infrared Galaxies in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry we have derived ages and masses for a total of 484 star clusters contained within these systems. This allows us to examine the properties of star clusters found in the extreme environments of LIRGs relative to lower luminosity star-forming galaxies in the local Universe. We find that by adopting a Bruzual \& Charlot simple stellar population (SSP) model and Salpeter initial mass function, the age distribution of clusters declines as dN/dτ=τ0.9+/0.3dN/d\tau = \tau^{-0.9 +/- 0.3}, consistent with the age distribution derived for the Antennae Galaxies, and interpreted as evidence for rapid cluster disruption occuring in the strong tidal fields of merging galaxies. The large number of 106M10^{6} M_{\odot} young clusters identified in the sample also suggests that LIRGs are capable of producing more high-mass clusters than what is observed to date in any lower luminosity star-forming galaxy in the local Universe. The observed cluster mass distribution of dN/dM=M1.95+/0.11dN/dM = M^{-1.95 +/- 0.11} is consistent with the canonical -2 power law used to describe the underlying initial cluster mass function (ICMF) for a wide range of galactic environments. We interpret this as evidence against mass-dependent cluster disruption, which would flatten the observed CMF relative to the underlying ICMF distribution.Comment: 63 pages, 58 Figures, 56 Tables, Accepted for publication in Ap

    The Spatial Extent of (U)LIRGs in the mid-Infrared I: The Continuum Emission

    Get PDF
    We present an analysis of the extended mid-infrared (MIR) emission of the Great Observatories All-Sky LIRG Survey (GOALS) sample based on 5-15um low resolution spectra obtained with the IRS on Spitzer. We calculate the fraction of extended emission as a function of wavelength for the galaxies in the sample, FEE_lambda. We can identify 3 general types of FEE_lambda: one where it is constant, one where features due to emission lines and PAHs appear more extended than the continuum, and a third which is characteristic of sources with deep silicate absorption at 9.7um. More than 30% of the galaxies have a median FEE_lambda larger than 0.5 implying that at least half of their MIR emission is extended. Luminous Infrared Galaxies (LIRGs) display a wide range of FEE in their warm dust continuum (0<=FEE_13.2um<=0.85). The large values of FEE_13.2um that we find in many LIRGs suggest that their extended MIR continuum emission originates in scales up to 10kpc. The mean size of the LIRG cores at 13.2um is 2.6kpc. However, once the LIR of the systems reaches the threshold of ~10^11.8Lsun, all sources become clearly more compact, with FEE_13.2um<=0.2, and their cores are unresolved. Our estimated upper limit for the core size of ULIRGs is less than 1.5kpc. The analysis indicates that the compactness of systems with LIR>~10^11.25Lsun strongly increases in those classified as mergers in their final stage of interaction. The FEE_13.2um is also related to the contribution of an active galactic nucleus (AGN) to the MIR. Galaxies which are more AGN-dominated are less extended, independently of their LIR. We finally find that the extent of the MIR continuum emission is correlated with the far-IR IRAS log(f_60um/f_100um) color. This enables us to place a lower limit to the area in a galaxy from where the cold dust emission may originate, a prediction which can be tested soon with the Herschel Space Telescope.Comment: 18 pages, 8 figures, accepted for publication in Ap

    CASSIS: The Cornell Atlas of Spitzer/Infrared Spectrograph Sources. II. High-resolution observations

    Get PDF
    The Infrared Spectrograph (IRS) on board the Spitzer Space Telescope observed about 15,000 objects during the cryogenic mission lifetime. Observations provided low-resolution (R~60-127) spectra over ~5-38um and high-resolution (R~600) spectra over ~10-37um. The Cornell Atlas of Spitzer/IRS Sources (CASSIS) was created to provide publishable quality spectra to the community. Low-resolution spectra have been available in CASSIS since 2011, and we present here the addition of the high-resolution spectra. The high-resolution observations represent approximately one third of all staring observations performed with the IRS instrument. While low-resolution observations are adapted to faint objects and/or broad spectral features (e.g., dust continuum, molecular bands), high-resolution observations allow more accurate measurements of narrow features (e.g., ionic emission lines) as well as a better sampling of the spectral profile of various features. Given the narrow aperture of the two high-resolution modules, cosmic ray hits and spurious features usually plague the spectra. Our pipeline is designed to minimize these effects through various improvements. A super sampled point-spread function was created in order to enable the optimal extraction in addition to the full aperture extraction. The pipeline selects the best extraction method based on the spatial extent of the object. For unresolved sources, the optimal extraction provides a significant improvement in signal-to-noise ratio over a full aperture extraction. We have developed several techniques for optimal extraction, including a differential method that eliminates low-level rogue pixels (even when no dedicated background observation was performed). The updated CASSIS repository now includes all the spectra ever taken by the IRS, with the exception of mapping observations

    Star-forming Clumps in Local Luminous Infrared Galaxies

    Get PDF
    We present HST narrowband near-infrared imaging of Paα and Paβ emission of 48 local luminous infrared galaxies (LIRGs) from the Great Observatories All-Sky LIRG Survey. These data allow us to measure the properties of 810 spatially resolved star-forming regions (59 nuclei and 751 extranuclear clumps) and directly compare their properties to those found in both local and high-redshift star-forming galaxies. We find that in LIRGs the star-forming clumps have radii ranging from ~90 to 900 pc and star formation rates (SFRs) of ~1 × 10⁻³ to 10 M⊙ yr⁻¹, with median values for extranuclear clumps of 170 pc and 0.03 M⊙ yr⁻¹. The detected star-forming clumps are young, with a median stellar age of 8.7 Myr, and have a median stellar mass of 5 × 10⁵ M ⊙. The SFRs span the range of those found in normal local star-forming galaxies to those found in high-redshift star-forming galaxies at z = 1–3. The luminosity function of the LIRG clumps has a flatter slope than found in lower-luminosity, star-forming galaxies, indicating a relative excess of luminous star-forming clumps. In order to predict the possible range of star-forming histories and gas fractions, we compare the star-forming clumps to those measured in the MassiveFIRE high-resolution cosmological simulation. The star-forming clumps in MassiveFIRE cover the same range of SFRs and sizes found in the local LIRGs and have total gas fractions that extend from 10% to 90%. If local LIRGs are similar to these simulated galaxies, we expect that future observations with ALMA will find a large range of gas fractions, and corresponding star formation efficiencies, among the star-forming clumps in LIRGs
    corecore