117 research outputs found

    In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome

    Get PDF
    The T-box transcription factor BRACHYURY (T) is a key regulator of mesoderm formation during early development. Complete loss of T has been shown to lead to embryonic lethality around E10.0. Here we characterize an inducible miRNA-based in vivo knockdown mouse model of T, termed KD3-T, which exhibits a hypomorphic phenotype. KD3-T embryos display axial skeletal defects caused by apoptosis of paraxial mesoderm, which is accompanied by urorectal malformations resembling the murine uro-recto-caudal syndrome and human caudal regression syndrome phenotypes. We show that there is a reduction of T in the notochord of KD3-T embryos which results in impaired notochord differentiation and its subsequent loss, whereas levels of T in the tailbud are sufficient for axis extension and patterning. Furthermore, the notochord in KD3-T embryos adopts a neural character and loses its ability to act as a signaling center. Since KD3-T animals survive until birth, they are useful for examining later roles for T in the development of urorectal tissues

    Do soldiers seek more mental health care after deployment? Analysis of mental health consultations in the Netherlands Armed Forces following deployment to Afghanistan

    Get PDF
    Background: Military deployment to combat zones puts military personnel to a number of physical and mental challenges that may adversely affect mental health. Until now, few studies have been performed in Europe on mental health utilization after military deployment. Objective: We compared the incidence of mental health consultations with the Military Mental Health Service (MMHS) of military deployed to Afghanistan to that of non-deployed military personnel. Method: We assessed utilization of the MMHS by the full cohort of the Netherlands Armed Forces enlisted between 2008 and 2010 through linkage of mental health and human resource information systems. Results: The total population consisted of 50,508 military (18,233 deployed, 32,275 non-deployed), who accounted for 1,906 new consultations with the MMHS. The follow-up was limited to the first 2 years following deployment. We observed higher mental health care utilization in deployed vs. non-deployed military personnel; hazard ratio (HR), adjusted for sex, military branch and time in service, 1.84 [95% CI 1.61ā€“2.11] in the first and 1.28 [1.09ā€“1.49] in the second year after deployment. An increased risk of adjustment disorders (HR 2.59 [2.02ā€“3.32] and 1.74 [1.30ā€“2.32]) and of anxiety disorders (2.22 [1.52ā€“3.25] and 2.28 [1.50ā€“3.45]) including posttraumatic stress disorder (5.15 [2.55ā€“10.40] and 5.28 [2.42ā€“11.50]), but not of mood disorders (1.33 [0.90ā€“1.97] and 1.11 [0.68ā€“1.82]), was observed in deployed personnel in the first- and second-year post-deployment, respectively. Military personnel deployed in a unit with a higher risk of confrontation with potentially traumatic events had a higher HR (2.13 [1.84ā€“2.47] and 1.40 [1.18ā€“1.67]). Conclusions: Though absolute risk was low, in the first and second year following deployment to Afghanistan there was an 80 and 30% higher risk for mental health problems resulting in a consultation with the Dutch MMHS compared to military never deployed to Afghanistan. These observations underscore the need for an adequate mental health infrastructure for those returning from deployment

    MethCORR Modelling of Methylomes From Formalin-Fixed Paraffin-Embedded Tissue Enables Characterization and Prognostication of Colorectal Cancer

    Get PDF
    Transcriptional characterization and classification has potential to resolve the inter-tumor heterogeneity of colorectal cancer and improve patient management. Yet, robust transcriptional profiling is difficult using formalin-fixed, paraffin-embedded (FFPE) samples, which complicates testing in clinical and archival material. We present MethCORR, an approach that allows uniform molecular characterization and classification of fresh-frozen and FFPE samples. MethCORR identifies genome-wide correlations between RNA expression and DNA methylation in fresh-frozen samples. This information is used to infer gene expression information in FFPE samples from their methylation profiles. MethCORR is here applied to methylation profiles from 877 fresh-frozen/FFPE samples and comparative analysis identifies the same two subtypes in four independent cohorts. Furthermore, subtype-specific prognostic biomarkers that better predicts relapse-free survival (HR = 2.66, 95%CI [1.67-4.22], P value < 0.001 (log-rank test)) than UICC tumor, node, metastasis (TNM) staging and microsatellite instability status are identified and validated using DNA methylation-specific PCR. The MethCORR approach is general, and may be similarly successful for other cancer types

    Improved siRNA/shRNA Functionality by Mismatched Duplex

    Get PDF
    siRNA (small interfering RNA) and shRNA (small hairpin RNA) are powerful and commonly used tools in biomedical research. Currently, siRNAs are generally designed as two 21 nt strands of RNA that include a 19 nt completely complementary part and a 2 nt overhang. However, since the si/shRNAs use the endogenous miRNA machinery for gene silencing and the miRNAs are generally 22 nt in length and contain multiple internal mismatches, we tested if the functionality can be increased by designing the si/shRNAs to mimic a miRNA structure. We systematically investigated the effect of single or multiple mismatches introduced in the passenger strand at different positions on siRNA functionality. Mismatches at certain positions could significantly increase the functionality of siRNAs and also, in some cases decreased the unwanted passenger strand functionality. The same strategy could also be used to design shRNAs. Finally, we showed that both si and miRNA structured oligos (siRNA with or without mismatches in the passenger strand) can repress targets in all individual Ago containing cells, suggesting that the Ago proteins do not differentiate between si/miRNA-based structure for silencing activity

    The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression.

    Get PDF
    Genome-wide association studies have identified a great number of non-coding risk variants for colorectal cancer (CRC). To date, the majority of these variants have not been functionally studied. Identification of allele-specific transcription factor (TF) binding is of great importance to understand regulatory consequences of such variants. A recently developed proteome-wide analysis of disease-associated SNPs (PWAS) enables identification of TF-DNA interactions in an unbiased manner. Here we perform a large-scale PWAS study to comprehensively characterize TF-binding landscape that is associated with CRC, which identifies 731 allele-specific TF binding at 116 CRC risk loci. This screen identifies the A-allele of rs1800734 within the promoter region of MLH1 as perturbing the binding of TFAP4 and consequently increasing DCLK3 expression through a long-range interaction, which promotes cancer malignancy through enhancing expression of the genes related to epithelial-to-mesenchymal transition

    mRNA knockdown by single strand RNA is improved by chemical modifications

    Get PDF
    While RNAi has traditionally relied on RNA duplexes, early evaluation of siRNAs demonstrated activity of the guide strand in the absence of the passenger strand. However, these single strands lacked the activity of duplex RNAs. Here, we report the systematic use of chemical modifications to optimize single-strand RNA (ssRNA)-mediated mRNA knockdown. We identify that 2ā€²F ribose modifications coupled with 5ā€²-end phosphorylation vastly improves ssRNA activity both in vitro and in vivo. The impact of specific chemical modifications on ssRNA activity implies an Ago-mediated mechanism but the hallmark mRNA cleavage sites were not observed which suggests ssRNA may operate through a mechanism beyond conventional Ago2 slicer activity. While currently less potent than duplex siRNAs, with additional chemical optimization and alternative routes of delivery, chemically modified ssRNAs could represent a powerful RNAi platform

    A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity

    No full text
    The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity

    MicroRNA Alterations and Associated Aberrant DNA Methylation Patterns across Multiple Sample Types in Oral Squamous Cell Carcinoma

    Get PDF
    Background: MicroRNA (miRNA) expression is broadly altered in cancer, but few studies have investigated miRNA deregulation in oral squamous cell carcinoma (OSCC). Epigenetic mechanisms are involved in the regulation of .30 miRNA genes in a range of tissues, and we aimed to investigate this further in OSCC. Methods: TaqManH qRT-PCR arrays and individual assays were used to profile miRNA expression in a panel of 25 tumors with matched adjacent tissues from patients with OSCC, and 8 control paired oral stroma and epithelium from healthy volunteers. Associated DNA methylation changes of candidate epigenetically deregulated miRNA genes were measured in the same samples using the MassArrayH mass spectrometry platform. MiRNA expression and DNA methylation changes were also investigated in FACS sorted CD44high oral cancer stem cells from primary tumor samples (CSCs), and in oral rinse and saliva from 15 OSCC patients and 7 healthy volunteers. Results: MiRNA expression patterns were consistent in healthy oral epithelium and stroma, but broadly altered in both tumor and adjacent tissue from OSCC patients. MiR-375 is repressed and miR-127 activated in OSCC, and we confirm previous reports of miR-137 hypermethylation in oral cancer. The miR-200 s/miR-205 were epigenetically activated in tumors vs normal tissues, but repressed in the absence of DNA hypermethylation specifically in CD44high oral CSCs. Aberrant miR-375 and miR-200a expression and miR-200c-141 methylation could be detected in and distinguish OSCC patient oral rinse and saliva from healthy volunteers, suggesting a potential clinical application for OSCC specific miRNA signatures in oral fluids. Conclusions: MiRNA expression and DNA methylation changes are a common event in OSCC, and we suggest miR-375, miR- 127, miR-137, the miR-200 family and miR-205 as promising candidates for future investigations. Although overall activated in OSCC, miR-200/miR-205 suppression in oral CSCs indicate that cell specific silencing of these miRNAs may drive tumor expansion and progression
    • ā€¦
    corecore