569 research outputs found

    Higher Order Integrability in Generalized Holonomy

    Get PDF
    Supersymmetric backgrounds in M-theory often involve four-form flux in addition to pure geometry. In such cases, the classification of supersymmetric vacua involves the notion of generalized holonomy taking values in SL(32,R), the Clifford group for eleven-dimensional spinors. Although previous investigations of generalized holonomy have focused on the curvature \Rm_{MN}(\Omega) of the generalized SL(32,R) connection \Omega_M, we demonstrate that this local information is incomplete, and that satisfying the higher order integrability conditions is an essential feature of generalized holonomy. We also show that, while this result differs from the case of ordinary Riemannian holonomy, it is nevertheless compatible with the Ambrose-Singer holonomy theorem.Comment: 19 pages, Late

    Generalized holonomy of M-theory vacua

    Full text link
    The number of M-theory vacuum supersymmetries, 0 <= n <= 32, is given by the number of singlets appearing in the decomposition of the 32 of SL(32,R) under H \subset SL(32,R) where H is the holonomy group of the generalized connection which incorporates non-vanishing 4-form. Here we compute this generalized holonomy for the n=16 examples of the M2-brane, M5-brane, M-wave, M-monopole, for a variety of their n=8 intersections and also for the n>16 pp waves.Comment: 24 pages, LaTe

    Instanton Cosmology and Domain Walls from M-theory and String Theory

    Get PDF
    The recent proposal by Hawking and Turok for obtaining an open inflationary universe from singular instantons makes use of low-energy effective Lagrangians describing gravity coupled to scalars and non-propagating antisymmetric tensors. In this paper we derive some exact results for Lagrangians of this type, obtained from spherical compactifications of M-theory and string theory. In the case of the S^7 compactification of M-theory, we give a detailed discussion of the cosmological solutions. We also show that the lower-dimensional Lagrangians admit domain-wall solutions, which preserve one half of the supersymmetry, and which approach AdS spacetimes near their horizons.Comment: 51 pages, Latex (3 times). Discussion and references adde

    Holography in asymptotically flat space-times and the BMS group

    Full text link
    In a previous paper (hep-th/0306142) we have started to explore the holographic principle in the case of asymptotically flat space-times and analyzed in particular different aspects of the Bondi-Metzner-Sachs (BMS) group, namely the asymptotic symmetry group of any asymptotically flat space-time. We continue this investigation in this paper. Having in mind a S-matrix approach with future and past null infinity playing the role of holographic screens on which the BMS group acts, we connect the IR sectors of the gravitational field with the representation theory of the BMS group. We analyze the (complicated) mapping between bulk and boundary symmetries pointing out differences with respect to the AdS/CFT set up. Finally we construct a BMS phase space and a free hamiltonian for fields transforming w.r.t BMS representations. The last step is supposed to be an explorative investigation of the boundary data living on the degenerate null manifold at infinity.Comment: 31 pages, several changes in section 3 and 7 and references update

    Consistent truncation of d = 11 supergravity on AdS_4 x S^7

    Full text link
    We study the system of equations derived twenty five years ago by B. de Wit and the first author [Nucl. Phys. B281 (1987) 211] as conditions for the consistent truncation of eleven-dimensional supergravity on AdS_4 x S^7 to gauged N = 8 supergravity in four dimensions. By exploiting the E_7(7) symmetry, we determine the most general solution to this system at each point on the coset space E_7(7)/SU(8). We show that invariants of the general solution are given by the fluxes in eleven-dimensional supergravity. This allows us to both clarify the explicit non-linear ansatze for the fluxes given previously and to fill a gap in the original proof of the consistent truncation. These results are illustrated with several examples.Comment: 41 pages, typos corrected, published versio

    Universality of Sypersymmetric Attractors

    Get PDF
    The macroscopic entropy-area formula for supersymmetric black holes in N=2,4,8 theories is found to be universal: in d=4 it is always given by the square of the largest of the central charges extremized in the moduli space. The proof of universality is based on the fact that the doubling of unbroken supersymmetry near the black hole horizon requires that all central charges other than Z=M vanish at the attractor point for N=4,8. The ADM mass at the extremum can be computed in terms of duality symmetric quartic invariants which are moduli independent. The extension of these results for d=5, N=1,2,4 is also reported. A duality symmetric expression for the energy of the ground state with spontaneous breaking of supersymmetry is provided by the power 1/2 (2/3) of the black hole area of the horizon in d=4 (d=5). It is suggested that the universal duality symmetric formula for the energy of the ground state in supersymmetric gravity is given by the modulus of the maximal central charge at the attractor point in any supersymmetric theory in any dimension.Comment: few misprints removed, version to appear in Phys. Rev. 20 pages, 1 figur

    Phase I trial combining temozolomide plus lapatinib for the treatment of brain metastases in patients with HER2-positive metastatic breast cancer: the LAPTEM trial

    Get PDF
    Background Brain metastases (BMs) pose a clinical challenge in breast cancer (BC). Lapatinib or temozolomide showed activity in BM. Our study assessed the combination of both drugs as treatment for patients with HER2-positive BC and BM. Methods Eighteen patients were enrolled, with sixteen of them having recurrent or progressive BM. Any type of previous therapy was allowed, and disease was assessed by gadolinium (Gd)-enhanced magnetic resonance imaging (MRI). The primary end points were the evaluation of the dose-limiting toxicities (DLTs) and the determination of the maximum-tolerated dose (MTD). The secondary end points included objective response rate, clinical benefit and duration of response. Results The lapatinib-temozolomide regimen showed a favorable toxicity profile because the MTD could not be reached. The most common adverse events (AEs) were fatigue, diarrhea and constipation. Disease stabilization was achieved in 10 out of 15 assessable patients. The estimated median survival time for the 16 patients with BM reached 10.94 months (95% CI: 1.09-20.79), whereas the median progression-free survival time was 2.60 months [95% confidence interval (CI): 1.82-3.37]. Conclusions The lapatinib-temozolomide combination is well tolerated. Preliminary evidence of clinical activity was observed in a heavily pretreated population, as indicated by the volumetric reductions occurring in brain lesion

    Unified Maxwell-Einstein and Yang-Mills-Einstein Supergravity Theories in Five Dimensions

    Full text link
    Unified N=2 Maxwell-Einstein supergravity theories (MESGTs) are supergravity theories in which all the vector fields, including the graviphoton, transform in an irreducible representation of a simple global symmetry group of the Lagrangian. As was established long time ago, in five dimensions there exist only four unified Maxwell-Einstein supergravity theories whose target manifolds are symmetric spaces. These theories are defined by the four simple Euclidean Jordan algebras of degree three. In this paper, we show that, in addition to these four unified MESGTs with symmetric target spaces, there exist three infinite families of unified MESGTs as well as another exceptional one. These novel unified MESGTs are defined by non-compact (Minkowskian) Jordan algebras, and their target spaces are in general neither symmetric nor homogeneous. The members of one of these three infinite families can be gauged in such a way as to obtain an infinite family of unified N=2 Yang-Mills-Einstein supergravity theories, in which all vector fields transform in the adjoint representation of a simple gauge group of the type SU(N,1). The corresponding gaugings in the other two infinite families lead to Yang-Mills-Einstein supergravity theories coupled to tensor multiplets.Comment: Latex 2e, 28 pages. v2: reference added, footnote 14 enlarge

    Six-dimensional Supergravity and Projective Superfields

    Full text link
    We propose a superspace formulation of N=(1,0) conformal supergravity in six dimensions. The corresponding superspace constraints are invariant under super-Weyl transformations generated by a real scalar parameter. The known variant Weyl super-multiplet is recovered by coupling the geometry to a super-3-form tensor multiplet. Isotwistor variables are introduced and used to define projective superfields. We formulate a locally supersymmetric and super-Weyl invariant action principle in projective superspace. Some families of dynamical supergravity-matter systems are presented.Comment: 39 pages; v3: some modifications in section 2; equations (2.3), (2.14b), (2.16) and (2.17) correcte
    corecore