2,179 research outputs found
Extra-large crystal emulsion detectors for future large-scale experiments
Photographic emulsion is a particle tracking device which features the best
spatial resolution among particle detectors. For certain applications, for
example muon radiography, large-scale detectors are required. Therefore, a huge
surface has to be analyzed by means of automated optical microscopes. An
improvement of the readout speed is then a crucial point to make these
applications possible and the availability of a new type of photographic
emulsions featuring crystals of larger size is a way to pursue this program.
This would allow a lower magnification for the microscopes, a consequent larger
field of view resulting in a faster data analysis. In this framework, we
developed new kinds of emulsion detectors with a crystal size of 600-1000 nm,
namely 3-5 times larger than conventional ones, allowing a 25 times faster data
readout. The new photographic emulsions have shown a sufficient sensitivity and
a good signal to noise ratio. The proposed development opens the way to future
large-scale applications of the technology, e.g. 3D imaging of glacier bedrocks
or future neutrino experiments.Comment: Version accepted for publication in JINS
A new application of emulsions to measure the gravitational force on antihydrogen
We propose to build and operate a detector based on the emulsion film
technology for the measurement of the gravitational acceleration on antimatter,
to be performed by the AEgIS experiment (AD6) at CERN. The goal of AEgIS is to
test the weak equivalence principle with a precision of 1% on the gravitational
acceleration g by measuring the vertical position of the anni- hilation vertex
of antihydrogen atoms after their free fall in a horizontal vacuum pipe. With
the emulsion technology developed at the University of Bern we propose to
improve the performance of AEgIS by exploiting the superior position resolution
of emulsion films over other particle de- tectors. The idea is to use a new
type of emulsion films, especially developed for applications in vacuum, to
yield a spatial resolution of the order of one micron in the measurement of the
sag of the antihydrogen atoms in the gravitational field. This is an order of
magnitude better than what was planned in the original AEgIS proposal.Comment: 17 pages, 14 figure
Ретроспективный анализ врождённых пороков развития у плодов и новорожденных в Гродненском областном перинатальном центре за период 2003-2007 год
НОВОРОЖДЕННЫЙ, БОЛЕЗНИПЛОДА ДИСТРЕС
Observation of nu_tau appearance in the CNGS beam with the OPERA experiment
The OPERA experiment is searching for nu_mu -> nu_tau oscillations in
appearance mode i.e. via the direct detection of tau leptons in nu_tau charged
current interactions. The evidence of nu_mu -> nu_tau appearance has been
previously reported with three nu_tau candidate events using a sub-sample of
data from the 2008-2012 runs. We report here a fourth nu_tau candidate event,
with the tau decaying into a hadron, found after adding the 2012 run events
without any muon in the final state to the data sample. Given the number of
analysed events and the low background, nu_mu -> nu_tau oscillations are
established with a significance of 4.2sigma.Comment: Submitted to Progress of Theoretical and Experimental Physics (PTEP
Procedure for short-lived particle detection in the OPERA experiment and its application to charm decays
The OPERA experiment, designed to perform the first observation of oscillations in appearance mode through the detection of
the leptons produced in charged current interactions, has
collected data from 2008 to 2012. In the present paper, the procedure developed
to detect particle decays, occurring over distances of the order of 1 mm
from the neutrino interaction point, is described in detail. The results of its
application to the search for charmed hadrons are then presented as a
validation of the methods for appearance detection
Determination of the muon charge sign with the dipolar spectrometers of the OPERA experiment
The OPERA long-baseline neutrino-oscillation experiment has observed the
direct appearance of in the CNGS beam. Two large muon
magnetic spectrometers are used to identify muons produced in the
leptonic decay and in interactions by measuring their charge and
momentum. Besides the kinematic analysis of the decays, background
resulting from the decay of charmed particles produced in
interactions is reduced by efficiently identifying the muon track. A new method
for the charge sign determination has been applied, via a weighted angular
matching of the straight track-segments reconstructed in the different parts of
the dipole magnets. Results obtained for Monte Carlo and real data are
presented. Comparison with a method where no matching is used shows a
significant reduction of up to 40\% of the fraction of wrongly determined
charges.Comment: 10 pages. Improvements in the tex
Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation
Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8-12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles
Measurement of the atmospheric muon charge ratio with the OPERA detector
The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used
to measure the atmospheric muon charge ratio in the TeV energy region. We
analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime
during the 2008 CNGS run. We computed separately the muon charge ratio for
single and for multiple muon events in order to select different energy regions
of the primary cosmic ray spectrum and to test the charge ratio dependence on
the primary composition. The measured charge ratio values were corrected taking
into account the charge-misidentification errors. Data have also been grouped
in five bins of the "vertical surface energy". A fit to a simplified model of
muon production in the atmosphere allowed the determination of the pion and
kaon charge ratios weighted by the cosmic ray energy spectrum.Comment: 14 pages, 10 figure
Identification and characterization of an oocyte factor required for development of porcine nuclear transfer embryos.
Nuclear reprogramming of differentiated cells can be induced by oocyte factors. Despite numerous attempts, these factors and mechanisms responsible for successful reprogramming remain elusive. Here, we identify one such factor, necessary for the development of nuclear transfer embryos, using porcine oocyte extracts in which some reprogramming events are recapitulated. After incubating somatic nuclei in oocyte extracts from the metaphase II stage, the oocyte proteins that were specifically and abundantly incorporated into the nuclei were identified by mass spectrometry. Among 25 identified proteins, we especially focused on a multifunctional protein, DJ-1. DJ-1 is present at a high concentration in oocytes from the germinal vesicle stage until embryos at the four-cell stage. Inhibition of DJ-1 function compromises the development of nuclear transfer embryos but not that of fertilized embryos. Microarray analysis of nuclear transfer embryos in which DJ-1 function is inhibited shows perturbed expression of P53 pathway components. In addition, embryonic arrest of nuclear transfer embryos injected with anti-DJ-1 antibody is rescued by P53 inhibition. We conclude that DJ-1 is an oocyte factor that is required for development of nuclear transfer embryos. This study presents a means for identifying natural reprogramming factors in mammalian oocytes and a unique insight into the mechanisms underlying reprogramming by nuclear transfer
- …
