91 research outputs found

    Copy Number Variants in Patients with Severe Oligozoospermia and Sertoli-Cell-Only Syndrome

    Get PDF
    A genetic origin is estimated in 30% of infertile men with the common phenotypes of oligo- or azoospermia, but the pathogenesis of spermatogenic failure remains frequently obscure. To determine the involvement of Copy Number Variants (CNVs) in the origin of male infertility, patients with idiopathic severe oligozoospermia (N = 89), Sertoli-cell-only syndrome (SCOS, N = 37)) and controls with normozoospermia (N = 100) were analysed by array-CGH using the 244A/400K array sets (Agilent Technologies). The mean number of CNVs and the amount of DNA gain/loss were comparable between all groups. Ten recurring CNVs were only found in patients with severe oligozoospermia, three only in SCOS and one CNV in both groups with spermatogenic failure but not in normozoospermic men. Sex-chromosomal, mostly private CNVs were significantly overrepresented in patients with SCOS. CNVs found several times in all groups were analysed in a case-control design and four additional candidate genes and two regions without known genes were associated with SCOS (P<1×10−3). In conclusion, by applying array-CGH to study male infertility for the first time, we provide a number of candidate genes possibly causing or being risk factors for the men's spermatogenic failure. The recurring, patient-specific and private, sex-chromosomal CNVs as well as those associated with SCOS are candidates for further, larger case-control and re-sequencing studies

    Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca2+ signaling.

    Get PDF
    Navigation of sperm in fluid flow, called rheotaxis, provides long-range guidance in the mammalian oviduct. The rotation of sperm around their longitudinal axis (rolling) promotes rheotaxis. Whether sperm rolling and rheotaxis require calcium (Ca2+ ) influx via the sperm-specific Ca2+ channel CatSper, or rather represent passive biomechanical and hydrodynamic processes, has remained controversial. Here, we study the swimming behavior of sperm from healthy donors and from infertile patients that lack functional CatSper channels, using dark-field microscopy, optical tweezers, and microfluidics. We demonstrate that rolling and rheotaxis persist in CatSper-deficient human sperm. Furthermore, human sperm undergo rolling and rheotaxis even when Ca2+ influx is prevented. Finally, we show that rolling and rheotaxis also persist in mouse sperm deficient in both CatSper and flagellar Ca2+ -signaling domains. Our results strongly support the concept that passive biomechanical and hydrodynamic processes enable sperm rolling and rheotaxis, rather than calcium signaling mediated by CatSper or other mechanisms controlling transmembrane Ca2+ flux

    A systematic review of the validated monogenic causes of human male infertility : 2020 update and a discussion of emerging gene-disease relationships

    Get PDF
    Altres ajuts: National Health and Medical Research Council (APP1120356); Netherlands Organisation for Scientific Research (918-15-667); Wellcome Trust (209451); German Research Foundation (DFG, CRU326); National Institutes of Health: Genomics of Spermatogenic Impairment (R01HD078641); Ministerio de Sanidad.Background: Human male infertility has a notable genetic component, including well-established diagnoses such as Klinefelter syndrome, Y-chromosome microdeletions and monogenic causes. Approximately 4% of all infertile men are now diagnosed with a genetic cause, but a majority (60-70%) remain without a clear diagnosis and are classified as unexplained. This is likely in large part due to a delay in the field adopting next-generation sequencing (NGS) technologies, and the absence of clear statements from field leaders as to what constitutes a validated cause of human male infertility (the current paper aims to address this). Fortunately, there has been a significant increase in the number of male infertility NGS studies. These have revealed a considerable number of novel gene-disease relationships (GDRs), which each require stringent assessment to validate the strength of genotype-phenotype associations. To definitively assess which of these GDRs are clinically relevant, the International Male Infertility Genomics Consortium (IMIGC) has identified the need for a systematic review and a comprehensive overview of known male infertility genes and an assessment of the evidence for reported GDRs. Objective and Rationale: In 2019, the first standardised clinical validity assessment of monogenic causes of male infertility was published. Here, we provide a comprehensive update of the subsequent 1.5 years, employing the joint expertise of the IMIGC to systematically evaluate all available evidence (as of 1 July 2020) for monogenic causes of isolated or syndromic male infertility, endocrine disorders or reproductive system abnormalities affecting the male sex organs. In addition, we systematically assessed the evidence for all previously reported possible monogenic causes of male infertility, using a framework designed for a more appropriate clinical interpretation of disease genes. Search Methods: We performed a literature search according to the PRISMA guidelines up until 1 July 2020 for publications in English, using search terms related to 'male infertility' in combination with the word 'genetics' in PubMed. Next, the quality and the extent of all evidence supporting selected genes were assessed using an established and standardised scoring method. We assessed the experimental quality, patient phenotype assessment and functional evidence based on gene expression, mutant in-vitro cell and in-vivo animal model phenotypes. A final score was used to determine the clinical validity of each GDR, across the following five categories: no evidence, limited, moderate, strong or definitive. Variants were also reclassified according to the American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines and were recorded in spreadsheets for each GDR, which are available at imigc.org. Outcomes: The primary outcome of this review was an overview of all known GDRs for monogenic causes of human male infertility and their clinical validity. We identified a total of 120 genes that were moderately, strongly or definitively linked to 104 infertility phenotypes. Wider Implications: Our systematic review curates all currently available evidence to reveal the strength of GDRs in male infertility. The existing guidelines for genetic testing in male infertility cases are based on studies published 25 years ago, and an update is far overdue. The identification of 104 high-probability 'human male infertility genes' is a 33% increase from the number identified in 2019. The insights generated in the current review will provide the impetus for an update of existing guidelines, will inform novel evidence-based genetic testing strategies used in clinics, and will identify gaps in our knowledge of male infertility genetics. We discuss the relevant international guidelines regarding research related to gene discovery and provide specific recommendations to the field of male infertility. Based on our findings, the IMIGC consortium recommend several updates to the genetic testing standards currently employed in the field of human male infertility, most important being the adoption of exome sequencing, or at least sequencing of the genes validated in this study, and expanding the patient groups for which genetic testing is recommended

    A global approach to addressing the policy, research and social challenges of male reproductive health

    Get PDF
    Male infertility is a global health issue; yet to a large extent, our knowledge of its causes, impact and consequence is largely unknown. Recent data indicate that infertile men have an increased risk of somatic disorders such as cancer and die younger compared to fertile men. Moreover, several studies point to a significant adverse effect on the health of the offspring. From the startling lack of progress in male contraception combined with the paucity of improvements in the diagnosis of male infertility, we conclude there is a crisis in male reproductive health. The Male Reproductive Health Initiative has been organized to directly address these issues (www.eshre.eu/Specialty-groups/Special-Interest-Groups/Andrology/MRHI). The Working Group will formulate an evidence-based strategic road map outlining the ways forward. This is an open consortium desiring to engage with all stakeholders and governments

    The piRNA-pathway factor FKBP6 is essential for spermatogenesis but dispensable for control of meiotic LINE-1 expression in humans

    Get PDF
    Infertility affects around 7% of the male population and can be due to severe spermatogenic failure (SPGF), resulting in no or very few sperm in the ejaculate. We initially identified a homozygous frameshift variant in FKBP6 in a man with extreme oligozoospermia. Subsequently, we screened a total of 2,699 men with SPGF and detected rare bi-allelic loss-of-function variants in FKBP6 in five additional persons. All six individuals had no or extremely few sperm in the ejaculate, which were not suitable for medically assisted reproduction. Evaluation of testicular tissue revealed an arrest at the stage of round spermatids. Lack of FKBP6 expression in the testis was confirmed by RT-qPCR and immunofluorescence staining. In mice, Fkbp6 is essential for spermatogenesis and has been described as being involved in piRNA biogenesis and formation of the synaptonemal complex (SC). We did not detect FKBP6 as part of the SC in normal human spermatocytes, but small RNA sequencing revealed that loss of FKBP6 severely impacted piRNA levels, supporting a role for FKBP6 in piRNA biogenesis in humans. In contrast to findings in piRNA-pathway mouse models, we did not detect an increase in LINE-1 expression in men with pathogenic FKBP6 variants. Based on our findings, FKBP6 reaches a "strong" level of evidence for being associated with male infertility according to the ClinGen criteria, making it directly applicable for clinical diagnostics. This will improve patient care by providing a causal diagnosis and will help to predict chances for successful surgical sperm retrieval

    Inherited defects of piRNA biogenesis cause transposon de-repression, impaired spermatogenesis, and human male infertility

    Get PDF
    piRNAs are crucial for transposon silencing, germ cell maturation, and fertility in male mice. Here, we report on the genetic landscape of piRNA dysfunction in humans and present 39 infertile men carrying biallelic variants in 14 different piRNA pathway genes, including PIWIL1, GTSF1, GPAT2, MAEL, TDRD1, and DDX4. In some affected men, the testicular phenotypes differ from those of the respective knockout mice and range from complete germ cell loss to the production of a few morphologically abnormal sperm. A reduced number of pachytene piRNAs was detected in the testicular tissue of variant carriers, demonstrating impaired piRNA biogenesis. Furthermore, LINE1 expression in spermatogonia links impaired piRNA biogenesis to transposon de-silencing and serves to classify variants as functionally relevant. These results establish the disrupted piRNA pathway as a major cause of human spermatogenic failure and provide insights into transposon silencing in human male germ cells

    A de novo paradigm for male infertility

    Get PDF
    De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p -value = 1.00 × 10 −5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p -value = 5.01 × 10 −4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p -value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility. Germline de novo mutations can impact individual fitness, but their role in human male infertility is understudied. Trio-based exome sequencing identifies many new candidate genes affecting male fertility, including an essential regulator of male germ cell pre-mRNA splicing

    Analysis of copy number variation in men with non-obstructive azoospermia

    Get PDF
    BACKGROUND: Recent findings demonstrate that single nucleotide variants can cause non-obstructive azoospermia (NOA). In contrast, copy number variants (CNVs) were only analysed in few studies in infertile men. Some have reported a higher prevalence of CNVs in infertile versus fertile men. OBJECTIVES: This study aimed to elucidate if CNVs are associated with NOA. MATERIALS AND METHODS: We performed array-based comparative genomic hybridization (aCGH) in 37 men with meiotic arrest, 194 men with Sertoli cell-only phenotype, and 21 control men. We filtered our data for deletions affecting genes and prioritized the affected genes according to a literature search. Prevalence of CNVs was compared between all groups. Exome data of 2,030 men were screened to detect further genetic variants in prioritized genes. Modelling was performed for the protein encoded by the novel candidate gene TEKT5 and we stained for TEKT5 in human testicular tissue. RESULTS: We determined the cause of infertility in two individuals with homozygous deletions of SYCE1 and in one individual with a heterozygous deletion of SYCE1 combined with a likely pathogenic missense variant on the second allele. We detected heterozygous deletions affecting MLH3, EIF2B2, SLX4, CLPP and TEKT5, in one subject each. CNVs were not detected more frequently in infertile men compared with controls. DISCUSSION: While SYCE1 and MLH3 encode known meiosis-specific proteins, much less is known about the proteins encoded by the other identified candidate genes, warranting further analyses. We were able to identify the cause of infertility in one out of the 231 infertile men by aCGH and in two men by using exome sequencing data. CONCLUSION: As aCGH and exome sequencing are both expensive methods, combining both in a clinical routine is not an effective strategy. Instead, using CNV calling from exome data has recently become more precise, potentially making aCGH dispensable

    Strong Association of 677 C>T Substitution in the MTHFR Gene with Male Infertility - A Study on an Indian Population and a Meta-Analysis

    Get PDF
    Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme of folate and methionine metabolism, making it crucial for DNA synthesis and methylation. The objective of this study was to analyze MTHFR gene 677C>T polymorphism in infertile male individuals from North India, followed by a meta-analysis on our data and published studies.We undertook genotyping on a total of 837 individuals including well characterized infertile (N = 522) and confirmed fertile (N = 315) individuals. The SNP was typed by direct DNA sequencing. Chi square test was done for statistical analysis. Published studies were searched using appropriate keywords. Source of data collection for meta-analysis included 'Pubmed', 'Ovid' and 'Google Scholar'. Those studies analyzing 677C>T polymorphism in male infertility and presenting all relevant data were included in meta-analysis. The genotype data for infertile subjects and fertile controls was extracted from each study. Chi square test was done to obtain odds ratio (OR) and p-value. Meta-analysis was performed using Comprehensive Meta-analysis software (Version 2). The frequency of mutant (T) allele (p = 0.0025) and genotypes (CT+TT) (p = 0.0187) was significantly higher in infertile individuals in comparison to fertile controls in our case-control study. The overall summary estimate (OR) for allele and genotype meta-analysis were 1.304 (p = 0.000), 1.310 (p = 0.000), respectively, establishing significant association of 677C>T polymorphism with male infertility.677C>T substitution associated strongly with male infertility in Indian population. Allele and genotype meta-analysis also supported its strong correlation with male infertility, thus establishing it as a risk factor

    Immune and spermatogenesis-related loci are involved in the development of extreme patterns of male infertility.

    Get PDF
    We conducted a genome-wide association study in a large population of infertile men due to unexplained spermatogenic failure (SPGF). More than seven million genetic variants were analysed in 1,274 SPGF cases and 1,951 unaffected controls from two independent European cohorts. Two genomic regions were associated with the most severe histological pattern of SPGF, defined by Sertoli cell-only (SCO) phenotype, namely the MHC class II gene HLA-DRB1 (rs1136759, P = 1.32E-08, OR = 1.80) and an upstream locus of VRK1 (rs115054029, P = 4.24E-08, OR = 3.14), which encodes a protein kinase involved in the regulation of spermatogenesis. The SCO-associated rs1136759 allele (G) determines a serine in the position 13 of the HLA-DRβ1 molecule located in the antigen-binding pocket. Overall, our data support the notion of unexplained SPGF as a complex trait influenced by common variation in the genome, with the SCO phenotype likely representing an immune-mediated condition.We thank the National DNA Bank Carlos III (University of Salamanca, Spain) for supplying part of the control DNA samples from Spain and all the participants for their essential collaboration. This work was supported by the Spanish Ministry of Science through the Spanish National Plan for Scientific and Technical Research and Innovation (refs. SAF2016-78722-R and PID2020-120157RB-I00), the Andalusian Plan for Research and Innovation (PAIDI 2020) (ref. PY20_00212), and the R+D+i Projects of the FEDER Operational Programme 2020 (ref. B-CTS-584-UGR20). F.D.C. was supported by the “Ramón y Cajal” programme (ref. RYC-2014-16458), and L.B.C. was supported by the Spanish Ministry of Economy and Competitiveness through the “Juan de la Cierva Incorporación” programme (ref. IJC2018-038026-I, funded by MCIN/AEI /10.13039/501100011033), all of them including FEDER funds. A.G.J. was funded by MCIN/AEI /10.13039/501100011033 and FSE “El FSE invierte en tu futuro” (ref. FPU20/02926). IPATIMUP integrates the i3S Research Unit, which is partially supported by the Portuguese Foundation for Science and Technology (FCT), financed by the European Social Funds (COMPETE-FEDER) and National Funds (projects PEstC/SAU/LA0003/2013 and POCI-01-0145-FEDER-007274). A.M.L. is funded by the Portuguese Government through FCT (IF/01262/2014). P.I.M. is supported by the FCT post-doctoral fellowship (SFRH/BPD/120777/2016), financed from the Portuguese State Budget of the Ministry for Science, Technology and High Education and from the European Social Fund, available through the Programa Operacional do Capital Humano. ToxOmics—Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, Nova Medical School, Lisbon, is also partially supported by FCT (Projects: UID/BIM/00009/2013 and UIDB/UIDP/00009/2020). SLarriba received support from “Instituto de Salud Carlos III” (grant DTS18/00101], co-funded by FEDER funds/European Regional Development Fund (ERDF)—a way to build Europe), and from “Generalitat de Catalunya” (grant 2017SGR191). SLarriba is sponsored by the “Researchers Consolidation Programme” from the SNS-Departament de Salut Generalitat de Catalunya (Exp. CES09/020). The German cohort was recruited within the Male Reproductive Genomics (MERGE) study and supported by the German Research Foundation Clinical Research Unit ‘Male Germ Cells’ (DFG CRU326, grants to F.T. and J.G.). This article is related to the Ph.D. Doctoral Thesis of Miriam Cerván-Martín (grant ref. BES-2017-081222 funded by MCIN/AEI/10.13039/501100011033 and FSE “El FSE invierte en tu futuro”)
    corecore