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Rotational motion and rheotaxis of human sperm
do not require functional CatSper channels and
transmembrane Ca2+ signaling
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Abstract

Navigation of sperm in fluid flow, called rheotaxis, provides long-
range guidance in the mammalian oviduct. The rotation of sperm
around their longitudinal axis (rolling) promotes rheotaxis.
Whether sperm rolling and rheotaxis require calcium (Ca2+) influx
via the sperm-specific Ca2+ channel CatSper, or rather represent
passive biomechanical and hydrodynamic processes, has remained
controversial. Here, we study the swimming behavior of sperm
from healthy donors and from infertile patients that lack func-
tional CatSper channels, using dark-field microscopy, optical
tweezers, and microfluidics. We demonstrate that rolling and
rheotaxis persist in CatSper-deficient human sperm. Furthermore,
human sperm undergo rolling and rheotaxis even when Ca2+ influx
is prevented. Finally, we show that rolling and rheotaxis also
persist in mouse sperm deficient in both CatSper and flagellar
Ca2+-signaling domains. Our results strongly support the concept
that passive biomechanical and hydrodynamic processes enable
sperm rolling and rheotaxis, rather than calcium signaling medi-
ated by CatSper or other mechanisms controlling transmembrane
Ca2+ flux.
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Introduction

In fluid flow, mammalian sperm realign their swimming path and

move upstream—a mechanism called rheotaxis (Miki & Clapham,

2013; El-Sherry et al, 2014; Kantsler et al, 2014; Tung et al, 2014,

2015; Bukatin et al, 2015). In the oviduct, long-range navigation via

rheotaxis directs sperm to the site of fertilization (Miki & Clapham,

2013). An important ingredient of rheotaxis is the rotation of sperm

around their longitudinal axis, called rolling (e.g., Miki & Clapham,

2013; Kantsler et al, 2014; Bukatin et al, 2015), resulting in a cone-

shaped beating envelope. Through this mechanism, vertical shear

flow, e.g., near boundary surfaces, exerts a torque that aligns the

longitudinal axis of sperm against the flow direction (Miki &

Clapham, 2013; Kantsler et al, 2014; Bukatin et al, 2015). However,

whether sperm rolling involves full 360° or incomplete rotations of

alternating direction is debated (Miki & Clapham, 2013; Muschol

et al, 2018).

The intracellular Ca2+ concentration ([Ca2+]i) controls the flagel-

lar beat and swimming behavior of sperm (Kaupp et al, 2003; Publi-

cover et al, 2008; Fechner et al, 2015). In most sperm species,

[Ca2+]i is set by the voltage- and alkaline-activated CatSper Ca2+

channel (Quill et al, 2001; Ren et al, 2001; Kirichok et al, 2006;

Lishko et al, 2010; Lishko et al, 2011; Strünker et al, 2011; Loux

et al, 2013; Seifert et al, 2015). Mammalian CatSper comprises four

homologous pore-forming subunits (CatSper 1–4) (e.g., Navarro

et al, 2008) and at least six auxiliary subunits (CatSper b, c, d, ɛ, f,
and Efcab9) (Liu et al, 2007; Wang et al, 2009; Chung et al, 2011,

2017; Hwang et al, 2019). The CatSper-channel complex is orga-

nized as quadrilateral threads along the flagellum; the CatSper

threads encompass several other proteins, including
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Ca2+-binding proteins and protein kinases, forming local

Ca2+-signaling domains near the membrane surface (Chung et al,

2014, 2017).

In Catsper1�/� mouse sperm, longitudinal rolling and rheotaxis

were abolished (Miki & Clapham, 2013), suggesting that control of

[Ca2+]i by CatSper is required for rolling and rheotaxis of

mammalian sperm. For human sperm, it was specifically proposed

that rolling is created by asymmetrical Ca2+ influx via CatSper

channels, stimulated by local pHi signaling (Miller et al, 2018).

The H+ channel Hv1 is organized along the flagellum of human

sperm in two threads near two of the four CatSper threads (Miller

et al, 2018). It was proposed that H+ efflux via Hv1 organizes

localized Ca2+ signaling that, ultimately, creates an asymmetry in

calcium-dependent inhibition of dynein-powered microtubule slid-

ing (Miller et al, 2018). However, the concept that rolling and

rheotaxis are enabled by Ca2+ influx cannot be reconciled with

the finding that rolling of mouse sperm does not require extracel-

lular Ca2+ (Babcock et al, 2014; Muschol et al, 2018), and that

exposure of human sperm to gradients of flow velocities does not

evoke measurable changes in [Ca2+]i (Zhang et al, 2016). More-

over, the inventory and regulation of signaling molecules are dif-

ferent among mammalian sperm (Kaupp & Strünker, 2017). For

example, mouse sperm lack Hv1 channels (Lishko et al, 2010;

Berger et al, 2017), and human CatSper is activated by nanomolar

concentrations of prostaglandins and progesterone (Lishko et al,

2011; Strünker et al, 2011) that do not activate mouse CatSper

(Lishko et al, 2011). Thus, if the quadrilateral arrangement of

CatSper and its control by pHi were key to rolling and rheotaxis of

mouse and human sperm, the underlying mechanisms ought to be

vastly different.

Here, we show that human sperm undergo continuous full 360°

rotations rather than incomplete rotations of alternating directions.

Moreover, to scrutinize the role of CatSper and Ca2+ in rolling and

rheotaxis of human sperm, we studied sperm of healthy donors and

patients who suffer from the deafness-infertility syndrome (DIS).

DIS patients lack the CATSPER2 gene (Zhang et al, 2007; Hilde-

brand et al, 2010). We show by 3D-STORM that, in the absence of

CatSper 2, other pore-forming CatSper subunits still assemble into

quadrilateral threads of non-functional CatSper complexes. We

demonstrate that rolling and rheotaxis persist in CatSper-deficient

sperm from DIS patients. Furthermore, we show that rolling and

rheotaxis of human sperm are preserved even when Ca2+ influx is

completely abolished. Finally, we demonstrate that rolling and

rheotaxis are also preserved in Catsper1�/� mouse sperm, which

lack the CatSper complex and the quadrilateral threads altogether.

We conclude that in mouse and human sperm, neither Ca2+ influx

via CatSper nor the quadrilateral Ca2+-signaling threads organized

by CatSper are required for rolling and rheotaxis.

Results

The expression of pore-forming CatSper subunits is not
strictly interdependent

We examined sperm from five infertile patients suffering from a

homozygous deletion of contiguous genes on chromosome 15,

including the CATSPER2 gene (Fig EV1). This deletion at 15q15.3 is

the hallmark of DIS (Zhang et al, 2007; Hildebrand et al, 2010).

Motile sperm isolated from patients’ ejaculates by the swim-up

procedure were morphologically normal, but lacked CatSper-

mediated Ca2+ influx (Fig 1A) and CatSper currents (Fig 1B and C),

confirming that the deletion of the CATSPER2 gene abrogates the

expression of functional CatSper channels (Smith et al, 2013;

Brenker et al, 2018a). Antibodies directed against CatSper 3 and

CatSper 4 stained the principal piece of sperm from healthy donors

and DIS patients (Fig 1D and E). 3D-STORM analysis revealed that

the quadrilateral arrangement of CatSper 3 and CatSper 4 along the

flagellum was preserved in DIS patients (Fig 1F and G). Thus, in the

absence of CatSper 2, CatSper 3 and CatSper 4 subunits still assem-

ble into non-functional protein complexes, whose sub-cellular

arrangement is similar to that of the functional CatSper-channel

complex (Chung et al, 2014, 2017).

Human sperm do not require functional CatSper channels
for longitudinal rolling

We examined whether longitudinal rolling is impaired or even

abolished in CatSper-deficient human sperm. Under dim dark-field

illumination, we monitored rolling of sperm in population via

periodic changes in brightness (blinking) of the sperm heads

(Fig 2A–C; Movie EV1). Semi-automated analysis of blinking

events revealed the rotation frequency of each sperm cell in the

field of view. In non-capacitated and capacitated control sperm

from healthy donors, the rotation frequency was normally distrib-

uted (Fig 2D) with a mean value of 4.8 � 1.5 Hz (n = 1,455) and

7.0 � 2.2 Hz (n = 1,097), respectively (Fig 2E) (Rigler & Thyberg,

1984; Aitken et al, 1985; Miller et al, 2018). Bicarbonate (25 mM)

used for capacitation stimulates cAMP synthesis (Carlson et al,

2007; Tresguerres et al, 2011; Brenker et al, 2012) and, thereby,

accelerates the flagellar beat (Esposito et al, 2004; Xie et al,

2006) and rotation frequency (Miki & Clapham, 2013). The rota-

tion frequency decreased with increasing viscosity (Fig 2F), in

line with previous results (e.g., Nosrati et al, 2015; Gallagher

et al, 2019). To study rolling of single sperm cells with high time

resolution and for long recording times, we combined bright-field

microscopy with an optical tweezer (Ashkin et al, 1986) (Fig 2G).

Sperm were trapped perpendicular to the optical axis (Fig 2H,

Movie EV2), and the periodic intensity fluctuations of the laser

light, which was back-scattered from the cell into the microscope

objective, provided a measure of the rotation frequency (Fig 2I).

For optically trapped control sperm from healthy donors, the

rotation frequency was constant for several tens of seconds

(Fig 2I). The frequency distribution and mean frequency of

trapped sperm (6.0 � 2.1 Hz, n = 32) and freely moving sperm

(7.0 � 2.2 Hz, n = 1,097) were similar (compare Fig 2J and D).

Trapping of sperm parallel to the optical axis allowed a frontal

view onto the tip of the sperm head; this view reveals that

human sperm display continuous full 360° rotations (Fig 2K,

Movie EV3), in contrast to incomplete rotations of alternating

directions that have been reported for mouse sperm (Babcock

et al, 2014; Muschol et al, 2018). Remarkably, also CatSper-

deficient human sperm displayed longitudinal rolling (Movie

EV4): In freely moving CatSper-deficient sperm incubated under

non-capacitating or capacitating conditions, the rotation frequency

was normally distributed around a mean value of 6.0 � 2.6 Hz
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(n = 1,009) and 6.8 � 3.1 Hz (n = 946), respectively (Fig 2L and

M). The CatSper-deficient human sperm swam progressively also

in highly viscous media (Movie EV5), and, like in control sperm,

the rotation frequency of CatSper-deficient sperm decreased with

increasing viscosity (Fig 2N). When optically trapped, the

CatSper-deficient sperm clearly displayed continuous full 360°

rotations (Fig 2O and P, Movie EV6), and the rotation frequency

remained constant over several tens of seconds (Fig 2Q). In

conclusion, human sperm do not require functional CatSper for

longitudinal rolling. If anything, the longitudinal rolling of

CatSper-deficient sperm might be slightly enhanced in the

absence of bicarbonate.

A
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G

Figure 1.
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Longitudinal rolling of human sperm does not require an influx
of Ca2+

We further examined whether Ca2+ is required for rolling of human

sperm, using both dark-field microscopy of sperm populations and

optical trapping of single sperm cells. Control sperm from healthy

donors held by the optical tweezer were dragged between parallel

laminar flows of three different solutions (Figs 3A and EV2). This

setup allows monitoring of the rotation frequency upon rapid

switching of solutions. A stimulus buffer (stimulus stream) and

sperm in control buffer (control stream) were separated by a barrier

stream containing fluorescein in control buffer; the buffers were fed

into a capillary via three inlets. The transfer from one to the other

stream was monitored by changes in the fluorescence of fluorescein:

When entering the barrier stream, the fluorescence rose and

resumed basal values when sperm reached the stimulus stream

(Fig 3B). Dragging of control sperm from healthy donors across the

barrier stream was completed within ≤ 10 s (Movie EV7). Dragging

itself did not affect rolling (Fig 3B and C): The mean rotation

frequency before and after dragging between control buffers was

6.7 � 2.8 Hz and 6.5 � 2.8 Hz (n = 14), respectively. After drag-

ging from bicarbonate-free to bicarbonate-containing buffer, the

rotation frequency increased from 6.6 � 2.9 to 11.3 � 2.5 Hz

(Fig 3D and E, n = 5). Next, the rotation frequency of trapped

sperm cells before and after transition from 2 mM to ˂ 20 nM extra-

cellular Ca2+ was studied. The rotation frequency was similar in the

absence and presence of Ca2+ (5.5 � 3.6 Hz versus 5.9 � 3.1 Hz,

n = 5; Fig 3F and G). Although in dark-field microscopy of sperm

populations, the fraction of motile sperm decreased in Ca2+-free

buffer with a time constant (s) of 5.3 min (Fig 3H) (Aaberg et al,

1989; Jin et al, 2007; Torres-Flores et al, 2011), at any time-point

during the decay, motile sperm were also rolling (Movie EV8). The

◀ Figure 1. Characterization of CATSPER2-deficient human sperm.

A Representative Ca2+ signals in sperm from a patient with deafness-infertility syndrome lacking functional CatSper channels (CATSPER2�/�; red) and a healthy donor
(black), evoked by progesterone, PGE1, NH4Cl, or ionomycin. NH4Cl increases the intracellular pH. Bar graph: Amplitudes (n = 4; mean � SD) of Ca2+ signals in
CATSPER2�/� sperm.

B Representative monovalent CatSper currents in CATSPER2�/� sperm (blue, green, orange, purple, brown) and in sperm from a healthy donor (black), and
corresponding current-voltage relationship (right). The membrane voltage was stepped from �100 to +100 mV in increments of 10 mV from a holding potential of
�80 mV.

C Outward and inward current amplitudes (mean � SD) at + 100 mV and -100 mV, respectively, in CATSPER2�/� sperm (color code: panel B) and sperm from
healthy donors (black).

D, E Representative immunocytochemical staining of control sperm from healthy donors and CATSPER2�/� sperm from DIS patients using antibodies directed against
CatSper 3 (D) or CatSper 4 (E); DNA was labeled with DAPI (blue). Scale bars represent 10 lm.

F 3D-STORM image in xy projection of sperm from a healthy donor labeled with the anti-CatSper 3 antibody (left). Axial projection of the boxed region (right). Scale
bars represent 5 lm in xy projections and 200 nm in axial projections.

G 3D-STORM images in xy projection of CATSPER2�/� sperm (left) labeled with the anti-CatSper 3 (upper panel) or anti-CatSper 4 (lower panel) antibody. Axial
projection of the boxed regions (right). Scale bars represent 5 lm in xy projections and 200 nm in axial projections.

▸Figure 2. Analysis of longitudinal rolling of human sperm.

A Experimental setup for population analysis by dark-field microscopy.
B Dark-field microscopy of a single sperm cell; shown are single frames obtained at t = 0, 48, 96, and 136 ms. Scale bar = 25 lm.
C Dark-field imaging of a sperm population; left: single frames at t = 185, 363, 540, and 718 ms. Sperm selected for analysis are highlighted (1–4). Right: temporal

change in the brightness (blinking) of sperm heads. The blue lines correspond to the time-points of the single frames. Scale bar = 25 lm.
D Representative distribution of rotation frequencies of freely swimming sperm incubated under non-capacitating (0 mM bicarbonate; black; n = 218) and capacitating

(25 mM bicarbonate; red; n = 232) conditions determined by dark-field imaging.
E Rolling frequency (mean � SD) of sperm incubated under non-capacitating (0 mM bicarbonate, n = 1,455; three experiments) and capacitating (25 mM bicarbonate,

n = 1,097, eight experiments) conditions.
F Rolling frequency (mean � SD) of freely swimming sperm in 0 (n = 1,175; five experiments), 0.2 (n = 832; three experiments), and 1% (n = 599; three experiments)

methyl cellulose (w/v).
G Experimental setup for the laser-based optical tweezer.
H Bright-field images of an optically trapped sperm cell obtained at t = 0, 55, 155, and 185 ms. Scale bar represents 10 lm.
I Representative time-course of the rotation frequency of trapped sperm (each sperm cell is represented by a different color). Error bars indicate the full width at half

prominence of the frequency peaks determined by the fast Fourier analysis.
J Distribution of rotation frequencies in trapped sperm (n = 32; mean frequency � SD 6.0 � 2.1 Hz).
K Image series of a sperm cell trapped parallel to the optical axis; images were obtained at t = 0, 95, 165, and 205 ms. The red bar indicates the 360° rotation of the tip

of the head. Scale bar represents 10 lm.
L Representative distribution of rotation frequencies of freely swimming CatSper-deficient sperm incubated under non-capacitating (0 mM bicarbonate; black; n = 73)

and capacitating conditions (25 mM bicarbonate; red; n = 272).
M Rolling frequency (mean � SD) of freely swimming CATSPER2�/� sperm incubated under non-capacitating (0 mM bicarbonate, n = 1,009; four experiments) and

capacitating (25 mM bicarbonate, n = 946; seven experiments) conditions.
N Rolling frequency (mean � SD) of freely swimming CATSPER2�/� sperm in 0 (n = 457; four experiments), 0.2 (n = 389; two experiments), and 1% (n = 187; two

experiments) methyl cellulose (w/v).
O Image series of a CATSPER2�/� sperm cell optically trapped perpendicular to the optical axis; images were obtained at t = 0, 75, 150, and 225 ms. Scale bar

represents 10 lm.
P Image series of a CATSPER2�/� sperm cell optically trapped parallel to the optical axis; images were obtained at t = 0, 60, 195, and 320 ms. The red bar indicates the

360° rotation of the tip of the head. Scale bar represents 10 lm.
Q Representative time courses of the rotation frequencies of optically trapped CATSPER2�/� sperm (each sperm is represented in a different color). Error bars indicate

the full width at half prominence of the frequency peaks determined by the fast Fourier analysis.
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mean rotation frequency and the rotation frequency-histogram

(determined at ≤ 5 min in Ca2+-free buffer) were similar to those

under control conditions (6.3 � 1.9 Hz, n = 224; Fig 3I). These

results show that Ca2+ influx is not required for rolling of human

sperm.

CatSper-deficient human sperm display rheotaxis

Next, we studied the swimming behavior of human sperm in a glass

capillary with and without fluid flow. Sperm were tracked in the field

of view, and the starting point of each track was shifted to the origin
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Figure 2.
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of a coordinate system (Fig 4A, C, E, G, I, K). To quantify the rheo-

tactic behavior, we determined the angular swimming directions and

plotted the mean relative frequency of sperm swimming with

angular directions of 45°–135°, 135°–225°, 225°–315°, and 315°–45°

in a spider plot. Under no-flow conditions, control sperm swam

randomly without any preferred directional angle (Fig 4A and B). In

contrast, under flow conditions, a large fraction of sperm aligned

their swimming path against the flow direction (Fig 4C and D, angu-

lar direction of the flow = 0°). The fraction of sperm swimming with

directional angles between 135° and 225° was 25.7 � 1.7% (n = 7,

1,301 sperm) and 44.3 � 8.6% (n = 7, 1,083 sperm) in the absence

and presence of a flow, respectively. For CatSper-deficient sperm

under no-flow conditions, the angular swimming directions were

random (Fig 4E and F; Movie EV9). Under flow conditions, like in

control sperm, a large fraction of the CatSper-deficient sperm aligned

their swimming path against the flow direction (Fig 4G and H; Movie

EV10). The fraction of CatSper-deficient sperm swimming with direc-

tional angles between 135° and 225° was 27.6 � 1.8% (no-flow;

n = 6, 1,068 sperm) versus 47.8 � 3.4% (flow; n = 7, 1,068 sperm).

These results demonstrate that functional CatSper channels are

dispensable not only for rolling, but also for rheotaxis of human

sperm.
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Figure 3. The action of bicarbonate and Ca2+ on longitudinal rolling of human sperm.

A Experimental setup to subject optically trapped sperm to different conditions in a three-channel microfluidic capillary.
B Rotation frequency of a trapped sperm cell before and after dragging across the barrier stream. The green trace indicates the fluorescence of fluorescein included in

the barrier stream. Error bars indicate the full width at half prominence of the frequency peaks determined by the fast Fourier analysis.
C Paired plot of rotation frequencies of individual sperm cells before and after dragging across the barrier stream.
D Rotation frequency of a trapped sperm cell before and after dragging from the control stream containing 0 mM bicarbonate into the stimulus stream containing

25 mM bicarbonate. Error bars indicate the full width at half prominence of the frequency peaks determined by the fast Fourier analysis.
E Paired plot of rotation frequencies of individual sperm at 0 and 25 mM bicarbonate.
F Rotation frequency of a trapped sperm cell in the presence and absence of extracellular Ca2+. Error bars indicate the full width at half prominence of the frequency

peaks determined by the fast Fourier analysis.
G Paired plot of rotation frequencies in the presence and absence of extracellular Ca2+.
H Fraction of motile sperm (mean � SD) in a sperm population incubated in the presence (black) and absence (at t = 0) of extracellular Ca2+ (red; n ≥ 5).
I Distribution of rotation frequencies in populations of freely swimming sperm in the presence (black, n = 335) and absence (red, n = 224) of extracellular Ca2+.
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Rheotaxis of human sperm does not require Ca2+ influx

Finally, we studied the trajectories of CatSper-deficient sperm in

Ca2+-free buffer ([Ca2+] ˂ 20 nM). Under no-flow conditions,

the angular swimming directions were random (Fig 4I and J).

Under flow conditions, like in the presence of extracellular Ca2+,

a large fraction of the CatSper-deficient sperm aligned their

swimming path against the flow direction (Fig 4K and L); in

Ca2+-free buffer, the fraction of CatSper-deficient sperm swim-

ming with directional angles between 135° and 225° was

28.2 � 2.7% (no-flow; n = 4, 442 sperm) versus 43.3 � 3.6%

(flow; n = 4, 620 sperm). These results demonstrate that Ca2+

influx in general is dispensable for both rolling and rheotaxis of

human sperm and that rheotaxis of CatSper-deficient human

sperm is similar in the absence and presence of extracellular

Ca2+.

A B C D

E F G H

I J K L

Figure 4.
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Rolling and rheotaxis persist in CatSper-deficient mouse sperm

Although both devoid of functional CatSper channels, rolling and

rheotaxis are largely unaffected in human CATSPER2�/� sperm, but

seem to be abolished in mouse Catsper1�/� sperm (Miki & Clapham,

2013). A major difference is that the quadrilateral Ca2+-signaling

threads are disrupted in Catsper1�/� mouse sperm (Chung et al,

2014), but not in CATSPER2�/� human sperm (Fig 1G). This finding

suggests that the supramolecular CatSper organization might be

required for rolling and rheotaxis. To test for this possibility, we

re-examined rolling and rheotaxis in mouse Catsper1�/� sperm.

Surprisingly, not only wild-type (Fig 5A, Movie EV11) but also

Catsper1�/� sperm (Fig 5B, Movie EV12) clearly displayed longitudi-

nal rolling. The mean rotational frequency of wild-type and

Catsper1�/� sperm was 2.9 � 1.3 Hz (n = 24) and 2.6 � 0.7 Hz

(n = 24), respectively (Fig 5A and B). We studied the swimming

behavior of wild-type and Catsper1�/� mouse sperm in a glass capil-

lary with and without fluid flow. We tracked sperm in the field of

view, and the starting point of each track was shifted to the origin of

a coordinate system (Fig 5C, E, G, I). To quantify the rheotactic

behavior, we determined the angular swimming directions and

plotted the mean relative frequencies of sperm swimming with an

angular direction of 45°–135°, 135°–225°, 225°–315°, and 315°–45°

in a spider plot. Under no-flow conditions, wild-type mouse sperm

swam randomly without any preferred directional angle (Fig 5C and

D). In contrast, under flow conditions, a large fraction of sperm

aligned their swimming path against the flow direction (Fig 5E and F;

angular direction of the flow = 0°). The fraction of sperm swimming

with directional angles between 135° and 225° was 25.6 � 5.9%

(n = 3, 127 sperm) and 53.2 � 6.7% (n = 3, 175 sperm) in the

absence and presence of flow, respectively (see also Movies EV13

and EV14). For Catsper1�/� mouse sperm under no-flow condi-

tions, the angular swimming directions were random (Fig 5G and

H, Movie EV15). Under flow conditions, like in wild-type sperm, a

large fraction of Catsper1�/� sperm aligned their swimming path

against the flow direction (Fig 5I and J, Movie EV16). The fraction

of Catsper1�/� sperm swimming with directional angles between

135° and 225° was 26.0 � 1.5% (no-flow; n = 4, 297 sperm)

versus 44.2 � 10.9% (flow; n = 4, 261 sperm), respectively. These

results demonstrate that also rolling and rheotaxis of mouse sperm

◀ Figure 4. Rheotaxis of human sperm.

A Trajectories of human sperm in the absence of a fluid flow. Sperm were tracked for 1.86 s. The starting point of each trajectory was centered to the origin of a
coordinate system, represented by the intersection of the dotted lines in the center of the circle.

B Spider-web plot of the mean (� SD) relative frequencies of sperm swimming with an angular direction of 315°–45°, 45°–135°, 135°–225°, and 225°–315° (n = 7; 1,301
sperm) in the absence of a fluid flow.

C Representative trajectories of human sperm in the presence of a fluid flow.
D Spider-web plot of the mean (� SD) relative frequencies of angular swimming directions (n = 7; 1,083 sperm) in the presence of a fluid flow. The red arrow indicates

the flow direction.
E Representative trajectories of CATSPER2�/� sperm in the absence of a fluid flow.
F Spider-web plot of the mean (� SD) relative frequencies of angular swimming directions of CATSPER2�/� sperm in the absence of a fluid flow (n = 6; 1,068 sperm).
G Trajectories of CATSPER2�/� sperm in the presence of a fluid flow.
H Spider-web plot of the mean (� SD) relative frequencies of angular swimming directions of CATSPER2�/� sperm in the presence of a fluid flow (n = 7; 1,068 sperm).

The red arrow indicates the fluid flow direction.
I Representative trajectories of CATSPER2�/� sperm in Ca2+-free buffer in the absence of a fluid flow.
J Spider-web plot of the mean (� SD) relative frequencies of angular swimming directions (n = 4; 442 sperm) of CATSPER2�/� sperm in Ca2+-free buffer in the absence

of a fluid flow.
K Representative trajectories of CATSPER2�/� sperm in Ca2+-free buffer in the presence of a fluid flow.
L Spider-web plot of the mean (� SD) relative frequencies of angular swimming directions (n = 4; 620 sperm) of CATSPER2�/� sperm in Ca2+-free buffer in the presence

of a fluid flow. The red arrow indicates the flow direction.

▸Figure 5. Rolling behavior and rheotaxis of mouse sperm.

A Left: Bright-field image series of a freely swimming wild-type sperm cell at t = 0, 151, and 303 ms. Scale bar represents 10 lm. Right: rotation frequency
(mean � SD) of freely swimming wild-type sperm (n = 24, three experiments).

B Left: Bright-field image series of a freely swimming Catsper1�/� sperm cell at t = 0, 151, and 294 ms. Scale bar represents 10 lm. Right: rotation frequency
(mean � SD) of freely swimming Catsper1�/� sperm (n = 24, three experiments).

C Representative trajectories of wild-type sperm in the absence of a fluid flow. The starting point of each trajectory was centered to the origin of a coordinate system,
represented by the intersection of the dotted lines in the center of the circle. Each color represents one trajectory.

D Spider-web plot of the mean (� SD) relative frequencies of sperm swimming with an angular direction of (binning: 315°–45°, 45°–135°, 135°–225°, and 225°–315°
(n = 3; 127 sperm) in the absence of a fluid flow.

E Representative trajectories of wild-type sperm in the presence of a fluid flow.
F Spider-web plot of the mean (� SD) relative frequencies of angular swimming directions (n = 3; 175 sperm) of wild-type sperm in the presence of a fluid flow. The

red arrow indicates the flow direction.
G Representative trajectories of Catsper1�/� sperm in the absence of a fluid flow. The starting point of each trajectory was centered to the origin of a coordinate

system, represented by the intersection of the dotted lines in the center of the circle. Trajectories are magnified by a factor of 2.05 with respect to the plots C and E
to compensate for the reduced swimming speed of the Catsper1�/� sperm.

H Spider-web plot of the mean (� SD) relative frequencies of angular swimming directions of Catsper1�/� sperm (n = 4; 297 sperm) in the absence of a fluid flow.
I Representative trajectories of Catsper1�/� sperm in the presence of a fluid flow; trajectories are magnified by a factor of 2.05 with respect to the plots C and E to

compensate for the reduced swimming speed of the Catsper1�/� sperm, and two trajectories were truncated (indicated by two parallel lines).
J Spider-web plot of the mean (� SD) relative frequencies of angular swimming directions (n = 4; 261 sperm) of Catsper1�/� sperm in the presence of a fluid flow. The

red arrow indicates the flow direction.
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do not require functional CatSper channels. For the time being, we

cannot reconcile ours with previous results (Miki & Clapham,

2013). We suggest that other laboratories examine rolling and

rheotaxis of CatSper-deficient mouse sperm independently.

Discussion

The Ca2+ channel CatSper has been implicated in rolling and

rheotactic steering of mammalian sperm (Miki & Clapham, 2013;

A

B

C D E F

G H I J

Figure 5.
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Miller et al, 2018). We show that, in fact, rolling and rheotaxis of

both human and mouse sperm do not require Ca2+ influx via

CatSper. This conclusion agrees with other reports: Rolling of mouse

sperm does not require extracellular Ca2+ (Babcock et al, 2014;

Muschol et al, 2018), and exposure of human sperm to gradients of

flow velocities does not evoke measurable changes in [Ca2+]i
(Zhang et al, 2016). Furthermore, it has been proposed that the

quadrilateral organization of CatSper and associated signaling

components provides the flagellar ultrastructure required for rolling

and rheotaxis (Miller et al, 2018). The CatSper complex and the

quadrilateral Ca2+-signaling domains are abolished in Catsper1�/�

mouse sperm (Chung et al, 2014), but not in human CATSPER2�/�

sperm. Yet, both sperm species display rheotaxis and undergo

rolling, suggesting that also the quadrilateral flagellar architecture

along with potential asymmetric cytosolic Ca2+ gradients estab-

lished by this structure is dispensable. Furthermore, mouse sperm

lack Hv1 channels (Lishko et al, 2010; Berger et al, 2017), indicating

that asymmetrical, spatially confined pH gradients established by

Hv1 are not required for rolling and rheotaxis. Altogether, our

results strongly support the concept that passive biomechanical and

hydrodynamic processes enable rolling and rheotaxis rather than

active spatio-temporally confined Ca2+ and H+ signaling.

On a broader perspective, rolling is not a unique feature of sperm

that undergo rheotaxis: Sperm from marine external fertilizers also

exhibit longitudinal rolling (Jikeli et al, 2015), although in their

aquatic habitat, no gradients of fluid velocity exist and chemotaxis

rather than rheotaxis is employed for navigation.

Of note, even in a viscous medium, rheotaxis of CatSper-deficient

and healthy human sperm was rather similar (Fig 6A and B). Thus,

at the particular flow velocity and viscosity that we used, and with

respect to the parameters that we analyzed, the lack of functional

CatSper does not seem to affect rheotaxis in more viscous fluid.

However, human sperm display rheotaxis within a broad range of

physiological flow velocities and viscosities (Kantsler et al, 2014).

The relation of upstream versus shear velocity is bell-shaped

(Kantsler et al, 2014), demonstrating that the rheotactic perfor-

mance peaks at a particular shear profile. Furthermore, the trajecto-

ries of human sperm swimming against a flow feature a transverse

component, and in cylindrical tubes, sperm swim on spiral-shaped

trajectories along the walls, thereby exploring the tube’s surface

(Kantsler et al, 2014). The transversal component is positively and

negatively related to the shear velocity and viscosity, respectively.

Thus, subtle differences in the 3D beat of CatSper-deficient sperm

might compromise rheotactic performance under some conditions

encountered in the oviduct. For example, rheotaxis might be

compromised at certain shear velocities and/or fluid viscosities, the

relationship of upstream versus shear velocity might be shifted,

and/or the transversal component might be altered. The beat

envelope is a critical determinant of the rheotactic performance:

Mouse sperm that lack CatSper f suffer from a rather stiff proximal

flagellum, altering the 3D flagellar envelope and hamper the reorien-

tation in fluid flow (Chung et al, 2017). Future studies need to

quantify the 3D flagellar beating pattern of control versus CatSper-

deficient human sperm as well as their rheotactic performance over

a broad range of fluid flows and viscosities.

Furthermore, in human sperm, CatSper translates stimulation

with oviductal hormones, like steroids and prostaglandins (Lishko

et al, 2011; Strünker et al, 2011; Brenker et al, 2012, 2018a; Miller

et al, 2016; Mannowetz et al, 2017), into Ca2+ and motility

responses that are important for human sperm chemotaxis and

hyperactivation (Schaefer et al, 1998; Harper et al, 2003; Oren-

Benaroya et al, 2008; Publicover et al, 2008; Baldi et al, 2009; Kilic

et al, 2009; Alasmari et al, 2013; Schiffer et al, 2014; Tamburrino

et al, 2014, 2015; Rennhack et al, 2018). In the absence and

A B C D

Figure 6. Rheotaxis of human sperm in viscous media and in the presence of progesterone.

A Spider-web plot of the mean (� SD) relative frequencies of sperm swimming with an angular direction of 315°–45°, 45°–135°, 135°–225°, and 225°–315° (n = 3; 403
sperm) of human sperm swimming in buffer fortified with 0.2% (w/v) methyl cellulose in the presence of a fluid flow.

B Spider-web plot of the mean (� SD) relative frequencies of angular swimming directions (n = 3; 520 sperm) of human CATSPER2�/� sperm swimming in buffer
fortified with 0.2% (w/v) methyl cellulose in the presence of a fluid flow.

C Spider-web plot of the mean (� SD) relative frequencies of sperm swimming with an angular direction of 315°–45°, 45°–135°, 135°–225°, and 225°–315° (n = 3; 454
sperm) of human sperm swimming in buffer fortified with 100 nM progesterone in the presence of a fluid flow.

D Spider-web plot of the mean (� SD) relative frequencies of angular swimming directions (n = 3; 372 sperm) of human CATSPER2�/� sperm swimming in buffer
fortified with 100 nM progesterone in the presence of a fluid flow. Data information: The red arrow indicates the flow direction.
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presence of progesterone (100 nM), rheotaxis of control and

CatSper-deficient human sperm was rather similar (Fig 6C and D),

indicating that under our conditions, progesterone activation of

CatSper does not affect rheotaxis. However, to decipher how the

ligand control of CatSper and, thereby, [Ca2+]i are intertwined with

rheotaxis, it is required to quantify rheotaxis of control and CatSper-

deficient human sperm in the absence and presence of pico- to

micromolar progesterone concentrations over a broad range of flow

velocities and viscosities that emulate in vitro the complex physico-

chemical landscape of the oviduct.

On a final note, it is unknown whether sub- or infertility in men

correlates with the failure of sperm to undergo rheotaxis. Studying

rheotaxis is technically demanding. Therefore, we propose to assess

longitudinal rolling as a surrogate biomarker for infertility. The

population analysis introduced in this study can be readily incorpo-

rated into existing computer-assisted sperm analysis setups for

clinical diagnostics.

Materials and Methods

Reagents

Reagents were obtained from Sigma-Aldrich (USA) unless otherwise

indicated.

Sperm preparation and buffer conditions

The studies were performed in accordance with the standards set by

the Declaration of Helsinki. Samples of human semen were obtained

from healthy volunteers and DIS patients with their prior written

consent, under approval of the institutional ethical committees of

the medical association Westfalen-Lippe and the medical faculty of

the University of Münster (4INie). Ejaculates were allowed to

liquefy at 37°C for 30–60 min. Motile sperm were purified by a

“swim-up” procedure: Liquefied semen (0.5–1 ml) was layered in a

50-ml Falcon tube below 4 ml of human tubal fluid (HTF) medium

containing (in mM): 93.8 NaCl, 4.69 KCl, 0.2 MgSO4, 0.37 KH2PO4,

2.04 CaCl2, 0.33 Na-pyruvate, 21.4 lactic acid, 2.78 glucose, 4

NaHCO3, and 21 HEPES, pH 7.35 (adjusted with NaOH). Alterna-

tively, the semen was diluted 1:10 with HTF and sperm, somatic

cells, and cell debris were pelleted by centrifugation at 700 g for

20 min (37°C). The pellet was resuspended in the same volume

HTF, 50-ml Falcon tubes were filled with 5 ml of the suspension,

and cells were pelleted by centrifugation at 700 g for 5 min (37°C).

In either case, motile sperm were allowed to swim up into HTF for

60–90 min at 37°C. After swim-up, sperm were washed twice

(700 g, 20 min) with HTF, the sperm concentration was adjusted,

and HTF was supplemented with 3 mg/ml human serum albumin

(HSA, Scientific Irvine, USA; referred to as HTF+); under these

conditions, sperm are non-capacitated. For capacitation, sperm were

resuspended after the second wash in HTF++ medium, containing

(in mM): 72.8 NaCl, 4.69 KCl, 0.2 MgSO4, 0.37 KH2PO4, 2.04 CaCl2,

0.33 Na-pyruvate, 21.4 lactic acid, 2.78 glucose, 25 NaHCO3, and 21

HEPES, pH 7.35 (adjusted with NaOH), and supplemented with

3 mg/ml HSA. Sperm were capacitated in HTF++ for at least 3 h.

Alternatively, swim-up and washing were directly performed in

HTF++. To study non-capacitated sperm in the absence of

bicarbonate and the motility response evoked by a step increase in

bicarbonate, swim-up and washing were performed in bicarbonate-

free HTF containing (in mM): 97.8 NaCl, 4.69 KCl, 0.2 MgSO4, 0.37

KH2PO4, 2.04 CaCl2, 0.33 Na-pyruvate, 21.4 lactic acid, 2.78

glucose, and 21 HEPES, pH 7.35 (adjusted with NaOH). HSA (3 mg/

ml) was added prior to the experiment to prevent attaching of sperm

to the surface of the recording chamber. C57BL/6 wild-type and

Catsper1�/� mice were handled and sacrificed in accordance with

the German Animal Welfare Act and the district veterinary office

under approval by the LANUV (84-02.05.20.13.115). Mouse epidi-

dymis was obtained from at least 21-week-old male mice that were

anaesthetized with CO2 or isoflurane (AbbVie Deutschland, Ludwig-

shafen, Germany) and sacrificed by cervical dislocation. Mouse

sperm were isolated by incision of the cauda epididymis in modified

TYH medium containing (in mM): 138 NaCl, 4.8 KCl, 2 CaCl2, 1.2

KH2PO4, 1 MgSO4, 5.6 glucose, 0.5 sodium pyruvate, 10 sodium

DL-lactate, and 10 HEPES, pH 7.4. Sperm were allowed to swim out

for 30 min at 30°C and 10% CO2. Catsper1�/� mice (Ren et al,

2001) were generously provided by David Clapham (Janelia

Research Campus, USA).

Rolling analysis in sperm populations

The longitudinal rolling of human sperm was recorded in glass

chambers (depth of ~ 100 lm) under an inverted microscope

(IX73; Olympus, Germany), equipped with a condenser (IX2-

LWUCD; Olympus, Germany) with a custom-made dark-field filter,

a 10× objective (UPLFLN10X2PH1; Olympus, Germany), and addi-

tional 1.6× magnification lenses (16× final magnification). The

samples were illuminated with a red light-emitting diode (LED;

M660D2; Thorlabs, Germany) and a custom-made power supply.

To study sperm rolling in bicarbonate-free HTF or HTF++, sperm

were diluted 1:9 in the respective buffer 5–30 min prior to the

experiment. To study rolling in the absence of extracellular Ca2+

([Ca2+]o ˂ 20 nM), sperm in HTF++ were diluted 1:9 only prior

to the experiment into a Ca2+-free HTF medium (HTF0Ca), contain-

ing (in mM): 69.8 NaCl, 4.69 KCl, 0.2 MgSO4, 0.37 KH2PO4, 5

EGTA, 0.33 Na-pyruvate, 21.4 lactic acid, 2.78 glucose, 25

NaHCO3, and 21 HEPES, pH 7.35 (adjusted with NaOH), and

supplemented with 3 mg/ml HSA. To study sperm rolling in

viscous medium, sperm in HTF+ were diluted in HTF+ fortified

with methyl cellulose. Over 4–10 min, short movies (~ 725 ms) of

sperm in different fields of view in the observation chamber were

recorded at 124 Hz with a high-speed sCMOS camera (Zyla, 4.2

plus, Andor, UK). Longitudinal rolling was assessed with a

custom-made program written in the ImageJ macro language (Ras-

band, 1997–2016). In brief, moving sperm heads were tracked, and

rotation was monitored by an oscillating change in head bright-

ness. The rotation frequency was computed from the average

temporal distance between two intensity peaks. The sperm head is

approximately plane symmetrical with planes intersecting the

length axis and, therefore, lights up twice per 360° rotation. Thus,

the rotation frequency (FRot) is given by FRot = FBlink × 0.5. Sperm

that displayed less than three relative maxima within the observa-

tion time were excluded from the analysis, yielding a cut-off for

FRot of about 1.5 Hz; immotile sperm were excluded from the anal-

ysis. The rolling of mouse sperm in TYH was studied in observa-

tion chambers (depth of ~ 400 lm; Ibidi, Germany) under an
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inverted microscope (IX73; Olympus, Germany) equipped with a

condenser (IX2-LWUCD; Olympus, Germany), a 10× objective

(UPLFLN10X2PH1, Olympus, Germany), and, optionally, an addi-

tional 1.6× magnification lens. The sample was illuminated by a

red LED (M660D2; Thorlabs, Germany). Movies of sperm were

recorded with a high-speed sCMOS camera (Zyla, 4.2 plus; Andor,

UK). The rolling frequency of sperm was determined by visual

frame-by-frame analysis.

Optical trapping of sperm

Unless otherwise indicated, we used capacitated sperm in HTF++

for optical-trapping experiments. The trapping of sperm cells was

achieved with an optical tweezer (Ashkin et al, 1986; Fig EV2),

using a continuous-wave (cw) diode laser (Lumics LU0975M500,

Germany) at a wavelength of 976 nm (red beam in Fig EV2). The

laser beam was expanded by a telescope setup of two lenses (L) to a

diameter of 1.7 mm (full width at half maximum) and directed into

a 100× oil immersion objective (MO, Plan-Apochromatic 100×/1.40

Oil DIC M27, Zeiss, Germany) with a numerical aperture (NA) of

1.4, allowing for tight focusing of the laser beam onto the head of a

sperm swimming inside an observation capillary. To assess the rota-

tion frequency of trapped sperm, the laser light reflected by the

sperm head into the objective was directed onto a photomultiplier

tube (PMT, H10721-20, Hamamatsu, Japan) by a beam splitter (re-

flectivity ~ 4%). A long-pass filter in front of the PMT blocked both

the bright-field illumination and ambient light. The PMT signal was

sampled with a frequency of 2 kHz, and every 10 points were aver-

aged. The rotation frequency was determined by a fast Fourier

transformation in a moving time window of 1.5 s. In parallel to the

quantification of the back-reflected laser light, we recorded the

trapped sperm with a bright-field microscope. A blue LED, equipped

with a 450-nm short-pass filter (SP) and a collimator lens, served as

a light source (blue beam in Fig EV2). The bright-field image was

reflected by a dichroic mirror (DM), projected by a lens onto the

chip of a charge-coupled device (CCD) camera (UI-3140CP-M-GL,

IDS, Germany) and recorded with a frame rate of 200 Hz. To

measure the rotation frequency of a sperm at different conditions,

we trapped sperm inside a microfluidic capillary (dimensions

[height × width]: 0.4 × 0.33 lm; l-Slide III 3in1; Ibidi, Germany)

with three separate inlets to establish a continuous, parallel laminar

flow of three solutions ((i) control stream with sperm, (ii) barrier

stream, and (iii) stimulus stream) with a flow speed of 65 lm/s.

The barrier stream was supplemented with fluorescein (1 lM).

Fluorescein was excited with the blue LED; fluorescence light was

collected through the microscope objective and reflected by two

DMs through a long-pass filter onto a second PMT (H10721-210;

Hamamatsu, Japan). Using a custom-built mechanical scanning

table, the microfluidic capillary was moved in the horizontal plane

orthogonal to the flow direction, dragging a trapped sperm within

6.8 s from the control stream through the barrier stream into the

stimulus stream. The fluorescein fluorescence, recorded synchro-

nously to the back-reflected laser light and the bright-field images,

provided a readout of the position of the trapped sperm inside the

flow profile. For control experiments, the control stream with

sperm, the barrier stream, and the stimulus stream consisted of

HTF++. To study the action of Ca2+, the stimulus stream consisted

of HTF0Ca. To study the action of bicarbonate, the control stream

with sperm consisted of bicarbonate-free HTF. For paired-plot analy-

sis, the change in frequency was determined after reaching a stable

value.

Rheotaxis assay

Human sperm in HTF+, in HTF+ containing 100 nM progesterone,

or in HTF+ containing 0.2% methylcellulose, or mouse sperm in

TYH were observed in shallow microfluidic channels with rectangu-

lar cross section of 0.4 × 3.8 mm (Ibidi, Germany) under an

inverted microscope (IX73; Olympus, Germany) equipped with a

condenser (IX2-LWUCD; Olympus, Germany) and a 10× objective

(UPLFLN1X2PH; Olympus, Germany). The sample was illuminated

by a red LED (M660D2; Thorlabs, Germany). Images were collected

at ~ 80 to ~ 125 Hz using a sCMOS camera (Zyla 4.2 Plus; Andor,

UK). Sperm were exposed to a buffer flow of ~ 13.5 ll/min (human)

or ~ 10 ll/min (mouse), respectively, using a syringe pump (World

Precision Instruments, USA). Individual human sperm were tracked

over 1.86 s in a semi-automatic fashion using a custom-made track-

ing tool based on the Mtrack2 plugin for ImageJ (NHI, Bethesda,

USA). The angle of each track was defined by its start and end point

in a two-dimensional Cartesian coordinate system with the flow

direction pointing to an angle of 0° and a trajectory straight against

the flow pointing to an angle of 180°. Immotile and surface-attached

sperm were excluded from analysis. For each experiment, computed

trajectory angles were binned into angle intervals of 90° and

expressed as fractions of the sperm population (e.g., Fig 4B). Indi-

vidual mouse sperm were tracked manually for 2 s; the angle of

each track was defined by its start and end point in a two-dimen-

sional Cartesian coordinate system with the flow direction pointing

to an angle of 0° and a trajectory straight against the flow pointing

to an angle of 180°. Like for human sperm, immotile and surface-

attached sperm were excluded from analysis. For each experiment,

computed trajectory angles were binned into angle intervals of 90°

and expressed as fractions of the sperm population (e.g., Fig 4D).

Measurement of changes in [Ca2+]i

Changes in [Ca2+]i were measured in sperm (in HTF+) loaded with

the fluorescent Ca2+ indicator Fluo-4-AM at 30°C in 384 multi-well

plates in a fluorescence plate reader (Fluostar Omega, BMG

Labtech, Ortenberg, Germany) at 30°C as described before (Schiffer

et al, 2014; Brenker et al, 2018b). Briefly, sperm were loaded with

Fluo-4-AM (5 lM, 20 min) at 37°C in the presence of Pluronic F-

127 (0.05% w/v). After incubation, excess dye was removed by

centrifugation (700 g, 5 min, room temperature). Sperm were resus-

pended in HTF at a density of 5 × 106 cells/ml. The wells were

filled with 54 ll of the sperm suspension; fluorescence was excited

at 480 nm (Fluo-4), and fluorescence emission was recorded at

520 nm. Changes in Fluo-4 fluorescence are depicted as DF/F0 (%),

that is, the change in fluorescence (DF) relative to the mean basal

fluorescence (F0) before application of buffer or stimuli (6 ll).

Electrophysiology

We recorded from sperm in the whole-cell configuration as

described before (Strünker et al, 2011). Seals between pipette and

sperm were formed either at the cytoplasmic droplet or in the neck

12 of 15 The EMBO Journal 39: e102363 | 2020 ª 2020 The Authors

The EMBO Journal Christian Schiffer et al



region in standard extracellular solution (HS) containing (in mM):

135 NaCl, 5 KCl, 1 MgSO4, 2 CaCl2, 5 glucose, 1 Na-pyruvate, 10

lactic acid, and 20 HEPES, adjusted to pH 7.4 with NaOH. Monova-

lent currents were recorded in a sodium-based divalent-free solution

(NaDVF) containing (in mM): 140 NaCl, 40 HEPES, and 1 EGTA,

adjusted to pH 7.4 with NaOH; the pipette (10–15 MΩ) solution

contained (in mM): 130 Cs-aspartate, 5 CsCl, 50 HEPES, and 5

EGTA, adjusted to pH 7.3 with CsOH. Data were not corrected for

liquid junction potentials.

Immunocytochemistry

Sperm were immobilized on microscope slides and fixed for 10 min

with paraformaldehyde in PBS (4%; PBS containing [in mM]: 137

NaCl, 2.7 KCl, 10 Na2HPO4, 1.8 KH2PO4, pH 7.4–7.5). To block

unspecific binding sites, sperm were incubated for 1 h with blocking

buffer (0.5% Triton-X 100 and 5% ChemiBLOCKER [Millipore,

USA] in 0.1 M PBS, pH 7.4). Primary antibodies (anti-CatSper 4,

ACC-304, Alomone Labs, Israel; polyclonal antibody raised in

rabbits, directed against amino acids 384–402 of CatSper 3) were

diluted in blocking buffer and incubated overnight. Fluorescent

secondary antibodies were diluted in blocking buffer containing

0.5 mg/ml DAPI (Invitrogen, USA), and pictures were taken with a

confocal microscope (FV1000; Olympus, Japan).

3D-STORM microscopy

Experiments were performed with a Ti-E microscope (Nikon, Japan)

in an imaging buffer (50 mM Tris, pH 8, 10 mM NaCl) with an

oxygen scavenging system (0.5 mg/ml glucose oxidase, 40 lg/ml

catalase [Roche Applied Science, Germany or Sigma-Aldrich], and

10% [w/v] glucose), and 10 mM 2-aminoethanethiol. Images were

acquired with an iXON 897 EMCCD camera (Andor, UK). 10,000–

60,000 frames were acquired per data set using a 647-nm excitation

laser at 100 mW at the sample plane, unless mentioned otherwise.

A 405-nm laser was used to maintain an adequate number of local-

izations per frame. For 3D STORM acquisition, a cylindrical lens

was introduced into the detection path; the “perfect focus system”

(Nikon) and a vibration isolation table were used to minimize axial

and lateral drifting, respectively. STORM movies were analyzed as

described previously using the Nikon software package based on a

technology developed by Dr. Xiaowei Zhuang (Huang et al, 2008).

Briefly, fluorescence peaks corresponding to individual molecules

were identified in each frame and fit, using least-squares fitting or

maximum-likelihood estimator fitting, with a two-dimensional

Gaussian to determine the (x,y) position of each molecule. For 3D

imaging, the ellipticity of the Gaussian was used to assign the z

coordinate. Drift correction was applied using cross-correlation.

STORM images were rendered with each localization plotted as a

Gaussian whose width is weighted by the inverse square root of the

number of detected photons for that switching event. Images were

filtered to reject molecules with emitted photon number below 500.

Molecules with an aspect ratio higher than 1.5 for 2D and 2.5 for 3D

datasets were rejected. Moreover, molecules that appeared for more

than 10 consecutive frames were rejected. Background noise in

STORM images caused by non-specifically bound antibodies,

appearing as scattered localizations at low local densities, was

removed by a local density filter. Low-density localizations were

filtered out by removing a localization if it was surrounded by fewer

than 10 localizations in the 80 nm × 80 nm region surrounding the

localization.

Array CGH analysis

Patients were analyzed by array comparative genomic hybridization

(CGH; Agilent platform, Agilent Technologies, Santa Clara, Califor-

nia, USA) using 400k arrays (#G4448A). For details, see Tüttelmann

et al (2011).

Statistical methods

Unless otherwise indicated, data are displayed as mean � SD.

Expanded View for this article is available online.
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