52 research outputs found

    Dimensions of space in business network research

    Get PDF
    Available online 23 June 2016Abstract not availableJan-Åke Törnroos, Aino Halinen, Christopher J. Medli

    Beacon v2 and Beacon networks: A "lingua franca" for federated data discovery in biomedical genomics, and beyond

    Full text link
    Beacon is a basic data discovery protocol issued by the Global Alliance for Genomics and Health (GA4GH). The main goal addressed by version 1 of the Beacon protocol was to test the feasibility of broadly sharing human genomic data, through providing simple "yes" or "no" responses to queries about the presence of a given variant in datasets hosted by Beacon providers. The popularity of this concept has fostered the design of a version 2, that better serves real-world requirements and addresses the needs of clinical genomics research and healthcare, as assessed by several contributing projects and organizations. Particularly, rare disease genetics and cancer research will benefit from new case level and genomic variant level requests and the enabling of richer phenotype and clinical queries as well as support for fuzzy searches. Beacon is designed as a "lingua franca" to bridge data collections hosted in software solutions with different and rich interfaces. Beacon version 2 works alongside popular standards like Phenopackets, OMOP, or FHIR, allowing implementing consortia to return matches in beacon responses and provide a handover to their preferred data exchange format. The protocol is being explored by other research domains and is being tested in several international projects

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    Elucidation of Barocaloric Effect in Spin Crossover Compounds

    No full text
    The search for new efficient materials and refrigeration mechanisms is a key challenge toreplace the conventional vapor compression technology. An attractive alternative technologyuses the caloric refrigeration cycle, which is based on the adiabatic temperature and isothermalentropy change upon tuning an external parameter such as pressure, electric field or magneticfield. Recently, spin crossover (SCO) compounds have been recognized as promising candidates,which exhibit large barocaloric effects: Large isothermal entropy changes have been reportedfor some of these SCO compounds at fairly low hydrostatic pressures (< 1.2 GPa) [1]. In SCOcomplexes the central metal ion switches between a low spin (LS) state at low temperature /high pressure and a high spin (HS) state at high temperature / low pressure. The LS to HStransition involves an increase of the spin entropy, but a larger part of the entropy changeoriginates from changes in the intramolecular vibrations [2].In this work, we report on magnetization measurements and single crystal synchrotronradiation diffraction on SCO complexes consisting of Fe+2 as a central ion bound to six nitrogenatoms. Our focus is Fe(PM-Bia)2(NCS)2, PM-Bia = (N-(2′-pyridylmethylene)-4-amino-biphenyl),which crystallizes in two polymorphs depending on thesynthesis route. Polymorph P1 crystallizes orthorhombic(Pccn) and undergoes an abrupt spin transition around 170 K.Polymorph P2 crystallizes monoclinic (P21/c) and undergoes agradual spin transition around 200 K [3].From the structural data, we extracted the temperaturedependence of the Fe-N distances (Figure 1), which can thenbe used to determine the high spin fraction. From the fitting ofthe temperature dependence of the high spin fraction, weobtained the change in entropy (ΔS), the change in enthalpy(ΔH), and the cooperativity (Г). The values obtained for ΔS andΔH on the basis of the structural data are substantiallydifferent from the values of the entropy as deduced from heatcapacity measurements [4]. The width of the transition region,differs strongly between the two polymorphs. This indicatesthe importance of intermolecular interactions for the spintransitions in both polymorphs

    Elucidation of Barocaloric Effect in Spin Crossover Compounds

    No full text
    The search for new efficient materials and refrigeration mechanisms is a key challenge toreplace the conventional vapor compression technology. An attractive alternative technologyuses the caloric refrigeration cycle, which is based on the adiabatic temperature and isothermalentropy change upon tuning an external parameter such as pressure, electric field or magneticfield. Recently, spin crossover (SCO) compounds have been recognized as promising candidates,which exhibit large barocaloric effects: Large isothermal entropy changes have been reportedfor some of these SCO compounds at fairly low hydrostatic pressures (< 1.2 GPa) [1]. In SCOcomplexes the central metal ion switches between a low spin (LS) state at low temperature /high pressure and a high spin (HS) state at high temperature / low pressure. The LS to HStransition involves an increase of the spin entropy, but a larger part of the entropy changeoriginates from changes in the intramolecular vibrations [2].In this work, we report on magnetization measurements and single crystal synchrotronradiation diffraction on SCO complexes consisting of Fe+2 as a central ion bound to six nitrogenatoms. Our focus is Fe(PM-Bia)2(NCS)2, PM-Bia = (N-(2′-pyridylmethylene)-4-amino-biphenyl),which crystallizes in two polymorphs depending on thesynthesis route. Polymorph P1 crystallizes orthorhombic(Pccn) and undergoes an abrupt spin transition around 170 K.Polymorph P2 crystallizes monoclinic (P21/c) and undergoes agradual spin transition around 200 K [3].From the structural data, we extracted the temperaturedependence of the Fe-N distances (Figure 1), which can thenbe used to determine the high spin fraction. From the fitting ofthe temperature dependence of the high spin fraction, weobtained the change in entropy (ΔS), the change in enthalpy(ΔH), and the cooperativity (Г). The values obtained for ΔS andΔH on the basis of the structural data are substantiallydifferent from the values of the entropy as deduced from heatcapacity measurements [4]. The width of the transition region,differs strongly between the two polymorphs. This indicatesthe importance of intermolecular interactions for the spintransitions in both polymorphs
    corecore