218 research outputs found

    The Hardness-Intensity Diagram of Cygnus X-3: Revisiting the Radio/X-Ray States

    Full text link
    Cygnus X-3 is one of the brightest X-ray and radio sources in the Galaxy, and is well known for its erratic behaviour in X-rays as well as in the radio, occasionally producing major radio flares associated with relativistic ejections. However, even after many years of observations in various wavelength bands Cyg X-3 still eludes clear physical understanding. Studying different emission bands simultaneously in microquasars has proved to be a fruitful approach towards understanding these systems, especially by shedding light on the accretion disc/jet connection. We continue this legacy by constructing a hardness-intensity diagram (HID) from archival Rossi X-ray Timing Explorer data and linking simultaneous radio observations to it. We find that surprisingly Cyg X-3 sketches a similar shape in the HID to that seen in other transient black hole X-ray binaries during outburst but with distinct differences. Together with the results of this analysis and previous studies of Cyg X-3 we conclude that the X-ray states can be assigned to six distinct states. This categorization relies heavily on the simultaneous radio observations and we identify one new X-ray state, the hypersoft state, similar to the ultrasoft state, which is associated to the quenched radio state during which there is no or very faint radio emission. Recent observations of GeV flux observed from Cyg X-3 (Tavani et al. 2009; Fermi LAT Collaboration et al. 2009) during a soft X-ray and/or radio quenched state at the onset of a major radio flare hint that a very energetic process is at work during this time, which is also when the hypersoft X-ray state is observed. In addition, Cyg X-3 shows flaring with a wide range of hardness.Comment: 17 pages, 9 figures, accepted for publication in MNRA

    Teaching MBA Students Teamwork And Team Leadership Skills: An Empirical Evaluation Of A Classroom Educational Program

    Get PDF
    A comprehensive educational program for teaching behavioral teamwork and team leadership skills was rigorously evaluated with 148 MBA students enrolled at an urban regional campus of a Midwestern public university.  Major program components included (1) videotaped student teams in leaderless group discussion (LGD) exercises at the course beginning and end, (2) behavioral assessment of student teamwork and team leadership in the LGD’s, (3) peer and instructor performance feedback and coaching after each LGD, (4) informational modules on teamwork and team leadership, and (5) multiple opportunities (classroom and field) to practice teamwork and team leadership skills.  Prominent findings indicated (1) a statistically significant increase in overall teamwork and overall team leadership scores of, respectively, 14% and 8%, (2) no demographic differences in student improvements as a function of sex, age, or race/ethnicity, and (3) very favorable student responses to end-of-course questions concerning teamwork and team leadership skills improvement, self-confidence, and attitudes

    Rak błony śluzowej macicy u kobiet poniżej 40 roku życia

    Get PDF

    Binaries with the eyes of CTA

    Full text link
    The binary systems that have been detected in gamma rays have proven very useful to study high-energy processes, in particular particle acceleration, emission and radiation reprocessing, and the dynamics of the underlying magnetized flows. Binary systems, either detected or potential gamma-ray emitters, can be grouped in different subclasses depending on the nature of the binary components or the origin of the particle acceleration: the interaction of the winds of either a pulsar and a massive star or two massive stars; accretion onto a compact object and jet formation; and interaction of a relativistic outflow with the external medium. We evaluate the potentialities of an instrument like the Cherenkov telescope array (CTA) to study the non-thermal physics of gamma-ray binaries, which requires the observation of high-energy phenomena at different time and spatial scales. We analyze the capability of CTA, under different configurations, to probe the spectral, temporal and spatial behavior of gamma-ray binaries in the context of the known or expected physics of these sources. CTA will be able to probe with high spectral, temporal and spatial resolution the physical processes behind the gamma-ray emission in binaries, significantly increasing as well the number of known sources. This will allow the derivation of information on the particle acceleration and emission sites qualitatively better than what is currently available.Comment: 23 pages, 13 figures, accepted for publication in Astroparticle Physics, special issue on Physics with the Cherenkov Telescope Arra

    Effects of the stellar wind on X-ray spectra of Cygnus X-3

    Full text link
    We study X-ray spectra of Cyg X-3 from BeppoSAX, taking into account absorption and emission in the strong stellar wind of its companion. We find the intrinsic X-ray spectra are well modelled by disc blackbody emission, its upscattering by hot electrons with a hybrid distribution, and by Compton reflection. These spectra are strongly modified by absorption and reprocessing in the stellar wind, which we model using the photoionization code cloudy. The form of the observed spectra implies the wind is composed of two phases. A hot tenuous plasma containing most of the wind mass is required to account for the observed features of very strongly ionized Fe. Small dense cool clumps filling <0.01 of the volume are required to absorb the soft X-ray excess, which is emitted by the hot phase but not present in the data. The total mass-loss rate is found to be (0.6--1.6) x 10^-5 solar masses per year. We also discuss the feasibility of the continuum model dominated by Compton reflection, which we find to best describe our data. The intrinsic luminosities of our models suggest that the compact object is a black hole.Comment: MNRAS, in pres

    The bright unidentified gamma-ray source 1FGL J1227.9-4852: Can it be associated with an LMXB?

    Full text link
    We present an analysis of high energy (HE; 0.1-300 GeV) gamma-ray observations of 1FGL J1227.9-4852 with the Fermi Gamma-ray Space Telescope, follow-up radio observations with the Australia Telescope Compact Array, Giant Metrewave Radio Telescope and Parkes radio telescopes of the same field and follow-up optical observations with the ESO VLT. We also examine archival XMM-Newton and INTEGRAL X-ray observations of the region around this source. The gamma-ray spectrum of 1FGL J1227.9-4852 is best fit with an exponentially cutoff power-law, reminiscent of the population of pulsars observed by Fermi. A previously unknown, compact radio source within the 99.7% error circle of 1FGL J1227.9-4852 is discovered and has a morphology consistent either with an AGN core/jet structure or with two roughly symmetric lobes of a distant radio galaxy. A single bright X-ray source XSS J12270-4859, a low-mass X-ray binary, also lies within the 1FGL J1227.9-4852 error circle and we report the first detection of radio emission from this source. The potential association of 1FGL J1227.9-4852 with each of these counterparts is discussed. Based upon the available data we find the association of the gamma-ray source to the compact double radio source unlikely and suggest that XSS J12270-4859 is a more likely counterpart to the new HE source. We propose that XSS J12270-4859 may be a millisecond binary pulsar and draw comparisons with PSR J1023+0038.Comment: Accepted for publication in MNRAS; 9 pages, 8 figures, 2 table

    Nothing Is True? The Credibility of News and Conflicting Narratives during “Information War” in Ukraine

    Get PDF
    In international politics, the strategic narratives of different governments compete for public attention and support. The Russian government’s narrative has prompted western concern due to fears that it exerts a destabilizing effect on societies in Eastern Europe and elsewhere. However, the behavior and thought processes of news consumers targeted by contradictory strategic narratives are rarely subjected to analysis. This paper examines how Ukrainian news consumers decide where to get their news and what to believe in a media environment where “propaganda” and “disinformation” are regarded as major threats to national security. Evidence comes from thirty audio-diaries and in-depth interviews conducted in 2016 among adult residents of Odesa Region. Through qualitative analysis of the diary and interview transcripts, the paper reveals how participants judged the credibility of news and narratives based on their priorities (what they considered important), not just “facts” (what they believed had happened). The attribution of importance to different foreign policy issues was associated, in turn, with varying personal experiences, memories, and individual cross-border relationships

    A giant radio flare from Cygnus X-3 with associated Gamma-ray emission

    Get PDF
    With frequent flaring activity of its relativistic jets, Cygnus X-3 is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy Gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cygnus X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy Gamma-ray emission. We present the results of a multi-wavelength campaign covering a quenched state, when radio emission from Cygnus X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~ 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E >100 MeV) reveal renewed Gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the Gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of Gamma-ray emission is also detected when Cygnus X-3 was weakly flaring in radio, right before transition to the radio quenched state. No Gamma rays are observed during the ~ one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger Gamma-ray emission, implying a connection to the accretion process, and also that the Gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.Comment: Accepted for publication in MNRAS. 10 pages 5 figures, 1 tabl
    corecore