8 research outputs found
Tracking Progress Toward EU Biodiversity Strategy Targets : EU Policy Effects in Preserving its Common Farmland Birds
Maximizing the area under biodiversity-related conservation measures is a main target of the European Union (EU) Biodiversity Strategy to 2020. We analyzed whether agrienvironmental schemes (AES) within EU common agricultural policy, special protected areas for birds (SPAs), and Annex I designation within EU Birds Directive had an effect on bird population changes using monitoring data from 39 farmland bird species from 1981 to 2012 at EU scale. Populations of resident and short-distance migrants were larger with increasing SPAs and AES coverage, while Annex I species had higher population growth rates with increasing SPAs, indicating that SPAs may contribute to the protection of mainly target species and species spending most of their life cycle in the EU. Because farmland birds are in decline and the negative relationship of agricultural intensification with their population growth rates was evident during the implementation of AES and SPAs, EU policies seem to generally attenuate the declines of farmland bird populations, but not to reverse them.Peer reviewe
Wintering bird communities are tracking climate change faster than breeding communities
Global climate change is driving species' distributions towards the poles and mountain tops during both non-breeding and breeding seasons, leading to changes in the composition of natural communities. However, the degree of season differences in climate-driven community shifts has not been thoroughly investigated at large spatial scales. We compared the rates of change in the community composition during both winter (non-breeding season) and summer (breeding) and their relation to temperature changes. Based on continental-scale data from Europe and North America, we examined changes in bird community composition using the community temperature index (CTI) approach and compared the changes with observed regional temperature changes during 1980-2016. CTI increased faster in winter than in summer. This seasonal discrepancy is probably because individuals are less site-faithful in winter, and can more readily shift their wintering sites in response to weather in comparison to the breeding season. Regional long-term changes in community composition were positively associated with regional temperature changes during both seasons, but the pattern was only significant during summer due to high annual variability in winter communities. Annual changes in community composition were positively associated with the annual temperature changes during both seasons. Our results were broadly consistent across continents, suggesting some climate-driven restructuring in both European and North American avian communities. Because community composition has changed much faster during the winter than during the breeding season, it is important to increase our knowledge about climate-driven impacts during the less-studied non-breeding season.Peer reviewe
Covariation in population trends and demography reveals targets for conservation action
Wildlife conservation policies directed at common and widespread, but declining, species are difficult to design and implement effectively, as multiple environmental changes are likely to contribute to population declines. Conservation actions ultimately aim to influence demographic rates, but targeting actions towards feasible improvements in these is challenging in widespread species with ranges that encompass a wide range of environmental conditions. Across Europe, sharp declines in the abundance of migratory landbirds have driven international calls for action, but actions that could feasibly contribute to population recovery have yet to be identified. Targeted actions to improve conditions on poor-quality sites could be an effective approach, but only if local conditions consistently influence local demography and hence population trends. Using long-term measures of abundance and demography of breeding birds at survey sites across Europe, we show that co-occurring species with differing migration behaviours have similar directions of local population trends and magnitudes of productivity, but not survival rates. Targeted actions to boost local productivity within Europe, alongside large-scale (non-targeted) environmental protection across non-breeding ranges, could therefore help address the urgent need to halt migrant landbird declines. Such demographic routes to recovery are likely to be increasingly needed to address global wildlife declines.Peer reviewe
Contrasting population trends of Common Starlings (Sturnus vulgaris) across Europe
The greatest loss of biodiversity in the EU has occurred on agricultural land. The Common Starling (Sturnus vulgaris) is one of the many numerous and widespread European farmland breeding bird species showing major population declines linked to European agricultural intensification. Here we present results based on monitoring data collected since 1975 in 24 countries to examine the influence of changing extent of grassland and cattle abundance (based on results of earlier studies showing the importance of lowland cattle grazed grassland for the species), wintering provenance and temperature on national breeding population trends of Starlings across Europe. Positive Starling population trends in Central-East Europe contrast with negative trends in North and West Europe. Based on this indicative approach, we found some support for the importance of cattle stock and no support for grassland, temperature or wintering provenance to explain Starling population trends in Europe. However, we acknowledge such a European-wide analysis may conceal regional differences in responses and suggest that currently accessible national land use datamight be insufficient to describe the detailed current changes in animal husbandry and grassland management that may be responsible for changes in food availability and hence breeding Starling abundance and their differences across Europe. Reviewing results from local studies relating Starling population trends to local agricultural change offer contradictory results, suggesting complex interacting processes at work. We recommend combining national datasets on demography, land-use/agricultural practices and from autecological research to better explain the reasons for contrasting Starling trends across Europe, to enable us to predict how changing agriculture will affect Starlings and potentially suggest mitigation measures to restore local populations where possible.Peer reviewe
The future distribution of wetland birds breeding in Europe validated against observed changes in distribution
Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s-2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr(-1) towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr(-1). Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to 'climate debt'. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds' resilience to the expected environmental changes in the future
Wintering bird communities are tracking climate change faster than breeding communities
Global climate change is driving species' distributions towards the poles and mountain tops during both non-breeding and breeding seasons, leading to changes in the composition of natural communities. However, the degree of season differences in climate-driven community shifts has not been thoroughly investigated at large spatial scales.We compared the rates of change in the community composition during both winter (non-breeding season) and summer (breeding) and their relation to temperature changes.Based on continental-scale data from Europe and North America, we examined changes in bird community composition using the community temperature index (CTI) approach and compared the changes with observed regional temperature changes during 1980-2016.CTI increased faster in winter than in summer. This seasonal discrepancy is probably because individuals are less site-faithful in winter, and can more readily shift their wintering sites in response to weather in comparison to the breeding season. Regional long-term changes in community composition were positively associated with regional temperature changes during both seasons, but the pattern was only significant during summer due to high annual variability in winter communities. Annual changes in community composition were positively associated with the annual temperature changes during both seasons.Our results were broadly consistent across continents, suggesting some climate-driven restructuring in both European and North American avian communities. Because community composition has changed much faster during the winter than during the breeding season, it is important to increase our knowledge about climate-driven impacts during the less-studied non-breeding season.</p
Data from: Wintering bird communities are tracking climate change faster than breeding communities
1. Global climate change is driving species’ distributions towards the poles and mountain tops during both non-breeding and breeding seasons, leading to changes in the composition of natural communities. However, the degree of season differences in climate-driven community shifts has not been thoroughly investigated at large spatial scales. 2. We compared the rates of change in the community composition during both winter (non-breeding season) and summer (breeding) and their relation to temperature changes. 3. Based on continental-scale data from Europe and North America, we examined changes in bird community composition using the community temperature index (CTI) approach and compared the changes with observed regional temperature changes during 1980–2016. 4. CTI increased faster in winter than in summer. This seasonal discrepancy is probably because individuals are less site-faithful in winter, and can more readily shift their wintering sites in response to weather in comparison to the breeding season. Regional long-term changes in community composition were positively associated with regional temperature changes during both seasons, but the pattern was only significant during summer due to high annual variability in winter communities. Annual changes in community composition were positively associated with the annual temperature changes during both seasons. 5. Our results were broadly consistent across continents, suggesting some climate-driven restructuring in both European and North American avian communities. Because community composition has changed much faster during the winter than during the breeding season, it is important to increase our knowledge about climate-driven impacts during the less-studied non-breeding season.,The data has been collected using breeding and winter bird surveys and the detailed methodologies are given in the Supplements of the article. The community temperatures are calculated using methodology of Devictor et al. 2008. Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. (2008) Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B, 275, 2743–2748. https://doi.org/10.1098/rspb.2008.0878,The dataset includes two files, one for annual changes and one for long term changes in community temperature index of birds and related temperature values. The annual data includes annual (fyear) estimates (fit), the standard error of the change (se) and 95% confidence intervals (lower, upper) of community temperature indices (CTI) in 57 regions (Country) in North America (Continent) and Europe for breeding and winter seasons (Season). Annual change in CTI (dCTI) and temperature (dTemp) as well as CTI of previous year of regions are also given. The long-term data includes long-term change (annual slope, dCTI) and the standard error of the change (CTI_se) in community temperature index (CTI) in 57 regions (Region) in North America (Continent) and Europe for breeding and winter seasons (Season). Raw mean CTI value (mCTI_raw) and centred CTI (mCTI), coordinates (Lat, Lon), long-term change in temperature (Temp) and its standard error (TempSE), predicted CTI changes (CTITempPred), mean raw temperature (mTemp_raw) and centred mean temperature (mTempSt) of regions are also given. In addition two R scripts to analyses the data (CTI_Annual_Analyses_20200817.R and CTI_Longterm_Analyses_20201130.R) are included.