708 research outputs found

    The effect of alkalisation on the mechanical properties of natural fibres

    Get PDF
    A study on the effect of alkalisaton using 3% NaOH solution was carried out on Flax, Kenaf, Abaca and Sisal to observe the impact that the common pre-treatment process has on fibre mechanical properties. The result of the investigation indicated that over-treatment of natural fibres using NaOH could have a negative effect on the base fibre properties. It is concluded that a treatment time of less than 10 minutes is sufficient to remove hemicelluloses and to give the optimum effect

    Vacuum infusion of natural fibre composites for structural applications

    Get PDF
    Numerous methods of manufacturing natural fibre composites have been reported in the literature, including compression moudling, often in conjunction with a hot press. Other forms of composite manufacture include 'Vacuum Assisted Resin Transfer Moulding' (VATRM) and the 'Seemann Composite Resin Infusion Moulding Process' (SCRIMP). These methods have been reported to produce natural fibre composies with reasonable mechanical properties [1-2]. In this paper, a vacuum infusion rig is described that has been developed to produce consistent quality composite plates for studies into optimising natural fibre composites. The process aims to harness the benefits of vacuum infusion and compression moulding, where vacuum infusion encourages the removal of trapped air in the system and hence avoid reduction, and additional compression moulding can help to achieve high volume fractions that are otherwise difficult in other processes

    Mechanical testing of natural fibre reinforced polyester resin composites and Mode 1 fracture toughness testing of resin blocks

    Get PDF
    Recent European Parliament directive requires companies to achieve materials recycling greater than 80% in particular in the automotive sector [1]. The research on natural fibre based composite materials fits well into this ecological image. The advantages of natural fibres over synthetic materials include, low density, relative cheapness, availability and biodegradability. In this paper we explore the fabrication and mechanical testing of natural fibre composites and this is part of an on going study at Strathclyde University and describes the fabrication of composites using natural fibre and styrene polyester resin. The properties of the synthetic resin can be varied by changing the catalysts concentration and flexural (three point bending) and single-edged notched bending (SENB) properties are reported at different concentrations of the catalyst

    Strongly Bound Surface Water Affects the Shape Evolution of Cerium Oxide Nanoparticles

    Get PDF
    The surface structure and composition of functional materials are well-known to be critically important factors controlling the surface reactivity. However, when doped the surface composition will change, and the challenge is to identify its impact on important surface processes and nanoparticle morphologies. We have begun to address this by using a combination of density functional theory and potential-based methods to investigate the effect of surface dopants on water adsorption and morphology of the technologically important material, CeO2_2, which finds application as electrolyte in SOFCs, catalyst in soot combustion, and enzyme mimetic agents in biomedicine. We show that by mapping CeO2_2 surface phase diagrams we can predict nanoparticle morphologies as a function of dopant, temperature, and water partial pressure. Our results show that low-temperature, undoped CeO2_2 nanocubes with active {100} surface sites are thermodynamically stable, but at the typical high temperature, operating conditions favor polyhedra where {100} surfaces are replaced by less active {111} surfaces by surface ion migration. However, doping with trivalent cations, such as Gd3+^{3+}, will increase binding of water on the {100} surfaces and hence act to preserve the cuboidal architecture by capping the active surfaces. As surfaces tend to be decorated by impurities and dopants it is clear that their role should receive more attention and the approach we describe can be routinely applied to nanomaterials, morphologies, and associated active/inactive surfaces

    Magnetic fields and accretion flows on the classical T Tauri star V2129 Oph

    Full text link
    From observations collected with the ESPaDOnS spectropolarimeter, we report the discovery of magnetic fields at the surface of the mildly accreting classical T Tauri star V2129 Oph. Zeeman signatures are detected, both in photospheric lines and in the emission lines formed at the base of the accretion funnels linking the disc to the protostar, and monitored over the whole rotation cycle of V2129 Oph. We observe that rotational modulation dominates the temporal variations of both unpolarized and circularly polarized line profiles. We reconstruct the large-scale magnetic topology at the surface of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to be rather complex, with a dominant octupolar component and a weak dipole of strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to the rotation axis. The large-scale field is anchored in a pair of 2-kG unipolar radial field spots located at high latitudes and coinciding with cool dark polar spots at photospheric level. This large-scale field geometry is unusually complex compared to those of non-accreting cool active subgiants with moderate rotation rates. As an illustration, we provide a first attempt at modelling the magnetospheric topology and accretion funnels of V2129 Oph using field extrapolation. We find that the magnetosphere of V2129 Oph must extend to about 7R* to ensure that the footpoints of accretion funnels coincide with the high-latitude accretion spots on the stellar surface. It suggests that the stellar magnetic field succeeds in coupling to the accretion disc as far out as the corotation radius, and could possibly explain the slow rotation of V2129 Oph. The magnetospheric geometry we derive produces X-ray coronal fluxes typical of those observed in cTTSs.Comment: MNRAS, in press (18 pages, 17 figures

    Thermal activation between Landau levels in the organic superconductor ÎČâ€Čâ€Č\beta''-(BEDT-TTF)2_{2}SF5_{5}CH2_{2}CF2_{2}SO3_{3}

    Get PDF
    We show that Shubnikov-de Haas oscillations in the interlayer resistivity of the organic superconductor ÎČâ€Čâ€Č\beta''-(BEDT-TTF)2_{2}SF5_{5} CH2_{2}CF2_{2}SO3_{3} become very pronounced in magnetic fields ∌\sim~60~T. The conductivity minima exhibit thermally-activated behaviour that can be explained simply by the presence of a Landau gap, with the quasi-one-dimensional Fermi surface sheets contributing negligibly to the conductivity. This observation, together with complete suppression of chemical potential oscillations, is consistent with an incommensurate nesting instability of the quasi-one-dimensional sheets.Comment: 6 pages, 4 figure

    Defect segregation facilitates oxygen transport at fluorite UO<sub>2</sub> grain boundaries

    Get PDF
    Data support article accepted for publication in Philosophical Transactions A. Data includes inputs and outputs for molecular dynamics simulations. Where impractical simulations can be rerun from the inputs provided

    Relationship of an hRAD54 gene polymorphism (2290 C/T) in an Ecuadorian population with chronic myelogenous leukemia

    Get PDF
    The hRAD54 gene is a key member of the RAD52 epistasis group involved in repair of double-strand breaks (DSB) by homologous recombination (HR). Thus, alterations of the normal function of these genes could generate genetic instability, shifting the normal process of the cell cycle, leading the cells to develop into cancer. In this work we analyzed exon 18 of the hRAD54 gene, which has been previously reported by our group to carry a silent polymorphism, 2290 C/T (Ala730Ala), associated to meningiomas. We performed a PCR-SSCP method to detect the polymorphism in 239 samples including leukemia and normal control population. The results revealed that the 2290 C/T polymorphism has frequencies of 0.1 for the leukemia and 0.1 for the control group. These frequencies show no statistical differences. Additionally, we dissected the leukemia group in chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL) to evaluate the polymorphism. The frequencies found in these subgroups were 0.14 for CML and 0.05 for ALL. We found statistically significant differences between CML patients and the control group (p < 0.05) but we did not find significant differences between ALL and the control group (p > 0.05). These results suggest a possible link between the 2290 C/T polymorphism of the hRAD54 gene and CML

    Inhomogeneous Superconductivity in Condensed Matter and QCD

    Full text link
    Inhomogeneous superconductivity arises when the species participating in the pairing phenomenon have different Fermi surfaces with a large enough separation. In these conditions it could be more favorable for each of the pairing fermions to stay close to its Fermi surface and, differently from the usual BCS state, for the Cooper pair to have a non zero total momentum. For this reason in this state the gap varies in space, the ground state is inhomogeneous and a crystalline structure might be formed. This situation was considered for the first time by Fulde, Ferrell, Larkin and Ovchinnikov, and the corresponding state is called LOFF. The spontaneous breaking of the space symmetries in the vacuum state is a characteristic feature of this phase and is associated to the presence of long wave-length excitations of zero mass. The situation described here is of interest both in solid state and in elementary particle physics, in particular in Quantum Chromo-Dynamics at high density and small temperature. In this review we present the theoretical approach to the LOFF state and its phenomenological applications using the language of the effective field theories.Comment: RevTex, 83 pages, 26 figures. Submitted to Review of Modern Physic
    • 

    corecore