179 research outputs found

    Controlling Hydrogen Activation, Spillover, and Desorption with Pd-Au Single-Atom Alloys

    Get PDF
    Key descriptors in hydrogenation catalysis are the nature of the active sites for H2 activation and the adsorption strength of H atoms to the surface. Using atomically resolved model systems of dilute Pd-Au surface alloys and density functional theory calculations, we determine key aspects of H2 activation, diffusion, and desorption. Pd monomers in a Au(111) surface catalyze the dissociative adsorption of H2 at temperatures as low as 85 K, a process previously expected to require contiguous Pd sites. H atoms preside at the Pd sites and desorb at temperatures significantly lower than those from pure Pd (175 versus 310 K). This facile H2 activation and weak adsorption of H atom intermediates are key requirements for active and selective hydrogenations. We also demonstrate weak adsorption of CO, a common catalyst poison, which is sufficient to force H atoms to spill over from Pd to Au sites, as evidenced by low-temperature H2 desorption

    The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    Get PDF
    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network's enantioselective interaction with other molecules

    Atomic-Scale Picture of the Composition, Decay, and Oxidation of Two-Dimensional Radioactive Films

    Get PDF
    Two-dimensional radioactive (125)I monolayers are a recent development that combines the fields of radiochemistry and nanoscience. These Au-supported monolayers show great promise for understanding the local interaction of radiation with 2D molecular layers, offer different directions for surface patterning, and enhance the emission of chemically and biologically relevant low-energy electrons. However, the elemental composition of these monolayers is in constant flux due to the nuclear transmutation of (125)I to (125)Te, and their precise composition and stability under ambient conditions has yet to be elucidated. Unlike I, which is stable and unreactive when bound to Au, the newly formed Te atoms would be expected to be more reactive. We have used electron emission and X-ray photoelectron spectroscopy (XPS) to quantify the emitted electron energies and to track the film composition in vacuum and the effect of exposure to ambient conditions. Our results reveal that the Auger electrons emitted during the ultrafast radioactive decay process have a kinetic energy corresponding to neutral Te. By combining XPS and scanning tunneling microscopy experiments with density functional theory, we are able to identify the reaction of newly formed Te to TeO2 and its subsequent dimerization. The fact that the Te2O4 units stay intact during major lateral rearrangement of the monolayer illustrates their stability. These results provide an atomic-scale picture of the composition and mobility of surface species in a radioactive monolayer as well as an understanding of the stability of the films under ambient conditions, which is a critical aspect in their future applications

    Enhancement of low-energy electron emission in 2D radioactive films

    Get PDF
    High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope (125)I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual (125)I atoms into (125)Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic (125)I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies

    Differential Detection of Genetic Loci Underlying Stem and Root Lignin Content in Populus

    Get PDF
    In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration

    A Role for Behavior in the Relationships Between Depression and Hostility and Cardiovascular Disease Incidence, Mortality, and All-Cause Mortality: the Prime Study.

    Get PDF
    BACKGROUND: Behavioral factors are important in disease incidence and mortality and may explain associations between mortality and various psychological traits. PURPOSE: These analyses investigated the impact of behavioral factors on the associations between depression, hostility and cardiovascular disease(CVD) incidence, CVD mortality, and all-cause mortality. METHODS: Data from the PRIME Study (N = 6953 men) were analyzed using Cox proportional hazards models, following adjustment for demographic and biological CVD risk factors, and other psychological traits, including social support. RESULTS: Following initial adjustment, both depression and hostility were significantly associated with both mortality outcomes (smallest SHR = 1.24, p < 0.001). Following adjustment for behavioral factors, all relationships were attenuated both when accounting for and not accounting for other psychological variables. Associations with all-cause mortality remained significant (smallest SHR = 1.14, p = 0.04). Of the behaviors included, the most significant contribution to outcomes was found for smoking, but a role was also found for fruit and vegetable intakes and high alcohol consumption. CONCLUSIONS: These findings demonstrate well-known associations between depression, hostility, and mortality and suggest the potential importance of behaviors in explaining these relationships

    South Atlantic paleobathymetry since early Cretaceous

    Get PDF
    We present early Cretaceous to present paleobathymetric reconstructions and quantitative uncertainty estimates for the South Atlantic, offering a strong basis for studies of paleocirculation, paleoclimate and paleobiogeography. Circulation in an initially salty and anoxic ocean, restricted by the topography of the Falkland Plateau, Rio Grande Ridge and Walvis Rise, favoured deposition of thick evaporites in shallow water of the Brazilian-Angolan margins. This ceased as sea oor spreading propagated northwards, opening an equatorial gateway to shallow and intermediate circulation. This gateway, together with subsiding volcano-tectonic barriers would have played a key role in Late Cretaceous climate changes. Later deepening and widening of the South Atlantic, together with gateway opening at Drake Passage would lead, by mid-Miocene (∼15 Ma) to the establishment of modern-style thermohaline circulation

    A microarray study of MPP(+)-treated PC12 Cells: Mechanisms of toxicity (MOT) analysis using bioinformatics tools

    Get PDF
    BACKGROUND: This paper describes a microarray study including data quality control, data analysis and the analysis of the mechanism of toxicity (MOT) induced by 1-methyl-4-phenylpyridinium (MPP(+)) in a rat adrenal pheochromocytoma cell line (PC12 cells) using bioinformatics tools. MPP(+ )depletes dopamine content and elicits cell death in PC12 cells. However, the mechanism of MPP(+)-induced neurotoxicity is still unclear. RESULTS: In this study, Agilent rat oligo 22K microarrays were used to examine alterations in gene expression of PC12 cells after 500 μM MPP(+ )treatment. Relative gene expression of control and treated cells represented by spot intensities on the array chips was analyzed using bioinformatics tools. Raw data from each array were input into the NCTR ArrayTrack database, and normalized using a Lowess normalization method. Data quality was monitored in ArrayTrack. The means of the averaged log ratio of the paired samples were used to identify the fold changes of gene expression in PC12 cells after MPP(+ )treatment. Our data showed that 106 genes and ESTs (Expressed Sequence Tags) were changed 2-fold and above with MPP(+ )treatment; among these, 75 genes had gene symbols and 59 genes had known functions according to the Agilent gene Refguide and ArrayTrack-linked gene library. The mechanism of MPP(+)-induced toxicity in PC12 cells was analyzed based on their genes functions, biological process, pathways and previous published literatures. CONCLUSION: Multiple pathways were suggested to be involved in the mechanism of MPP(+)-induced toxicity, including oxidative stress, DNA and protein damage, cell cycling arrest, and apoptosis

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi
    corecore