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Abstract  

Key descriptors in hydrogenation catalysis are the nature of the active sites for H2 activation and 

the adsorption strength of H atoms to the surface. Using an atomically resolved model system of 

dilute Pd-Au surface alloys and density functional theory calculations, we determine key aspects 

of H2 activation, diffusion, and desorption. Pd monomers in a Au(111) surface catalyze the 

dissociative adsorption of H2 at temperatures as low as 85 K, a process previously expected to 

require contiguous Pd sites. H atoms preside at the Pd sites and desorb at temperatures 

significantly lower than from pure Pd (175 versus 310 K). This facile H2 activation and weak 

adsorption of H atom intermediates are key requirements for active and selective hydrogenations. 

We also demonstrate weak adsorption of CO, a common catalyst poison, forces H atoms to 

spillover from Pd to Au sites as evidenced by low temperature H2 desorption.  
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A key requirement in the efficient use of heterogeneous catalysts, fuel cells and hydrogen 

storage devices is the ability to activate, uptake and release hydrogen easily.1–3 Metallic surfaces 

that bind H weakly can exhibit high catalytic selectivity; however, these surfaces often have high 

activation barriers for H2 dissociation which limits the activity of the catalysts.4,5 One viable 

approach to produce weakly bound H atoms on the surface of catalysts is to use a bimetallic 

alloy that combines reactive catalytic metals with inert coinage metals.6–9 This alloy combination 

includes a catalytic metal that exhibits facile H2 dissociation and a coinage metal that can utilize 

the weakly bound H atoms to catalyze hydrogenation reactions.10–14  

 Au nanoparticles have been recently shown to catalyze highly selective hydrogenation 

and oxidation reactions due to the weak adsorption energy of H and O on Au.15–18 The addition 

of Pd into Au changes the catalytic activity and selectivity for multiple reactions including vinyl 

acetate synthesis,19 hydrogen peroxide synthesis,20 hydrocarbon hydrogenation,21,22 CO 

oxidation,23 and oxidation of alcohols to aldehydes.24 For many of these reactions, the size and 

dispersion of the Pd atom clusters have an impact on the observed chemistry; the so-called 

ensemble effect in alloy catalysis.25,26 Selective synthesis of vinyl acetate19,27 and hydrogen 

peroxide20 rely on the inability of Pd monomers to activate O2 while CO oxidation requires Pd 

dimers to dissociate O2.23 For H2 activation on Pd-Au, the necessary ensemble size has been 

debated. Yu et al. and Maroun et al.  concluded that contiguous Pd atoms are required for H2 

activation.28,29 But, density functional theory (DFT) calculations by Venkatachalam et al. 

indicated that Pd monomers may be capable of H2 activation.30 However, so far no experimental 

evidence exists demonstrating this single atom chemistry. Furthermore, CO is a common poison 

for catalysts. An understanding of CO interaction with adsorbed molecules and competition for 

actives sites is important when designing new catalysts. Hence, an atomic level understanding of 
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reactive sites for CO adsorption and H2 activation will elucidate the minimal Pd ensemble 

capable of activating H2 and reveal the energetic landscape for uptake, spillover and release of H 

and CO.  

To probe the ability of Pd monomers in Au to activate H2 and to induce spillover of H 

atoms onto Au, we studied the fundamental processes of dissociation, spillover, and desorption 

using the complementary techniques of scanning tunneling microscopy (STM), temperature 

programmed desorption (TPD) and density functional theory (DFT). STM enables direct 

visualization of the atomic composition of the active sites necessary for H2 activation and TPD 

allows us to elucidate key parts of the energy landscape for activation, spillover and desorption. 

By studying dilute concentrations of Pd atoms (≤5%) in Au, we observe facile dissociation and 

low temperature recombinative desorption of H2 from isolated Pd atoms in Au(111). Our Pd-Au 

single atom alloy (SAA) data contrasts with previous studies that suggested at least two 

contiguous Pd atoms are required for H2 dissociation,28,29 although this previous work lacked an 

atomic scale characterization of the alloy surface. Furthermore, we have discovered that the co-

adsorption of CO with H forces H to spill over from the active Pd sites to Au. By comparing H2 

and CO desorption temperatures to calculated adsorption energies of H and CO, we elucidate the 

energetic pathway for the adsorption, spillover, and desorption of H with and without CO from 

Pd monomers in Au.  

 In order to determine if Pd monomers in Au are capable of H2 activation, we first 

generated Pd-Au(111) alloys with isolated Pd atoms present in the surface layer (Figure 1). Pd-

Au(111) alloys formed by the vapor deposition of Pd on Au(111) have been extensively 

characterized.29,31–35 Depending on the surface temperature and flux of incoming Pd atoms 

during alloying, a range of structures can be formed from isolated atoms substituted into the 
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surface and subsurface layers of Au to Pd rich nanoparticles on the surface.31–33 At low Pd 

coverages (≤0.05 ML), Pd atoms exists as isolated atoms substituted into the Au lattice. Due to 

stronger heteroatom bonds, Pd atoms prefer to be surrounded by Au atoms and exist as isolated 

species at low coverages.30,36,37  At Pd coverages >0.05 ML, the Pd atoms begin to cluster due to 

a kinetic limitation on the dispersion of the Pd atoms in Au.31 In the present study, all Pd-

Au(111) alloys were prepared at 380 K yielding an alloyed surface where Pd atoms 

predominately exist as monomers in the Au surface at coverages below 0.05 ML.  

 

Figure 1. Pd-Au(111) SAA. Isolated Pd atoms (highlighted by arrows) substituted into Au(111) 
appear topographically higher than the Au host. 

 

Using TPD, we investigated the ability of isolated Pd atoms to dissociate H2 (Figure 2). 

We prepared Pd-Au(111) SAA with between 0.01 and 0.05 ML Pd and exposed them to H2 at 85 

K and observed the desorption of H2 at 110 K and 175 K (Figure 2A). The predominant 

desorption peak at 175 K is due to H2 desorption from single Pd atoms because increasing the Pd 

coverage leads to a linear increase in the area of the peak.  In the absence of Pd atoms, no 

desorption of H2 is observed from bare Au(111) after the same exposure to H2. The desorption 
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temperature of H2 at 175 K indicates H2 dissociates on the surface since molecular H2 desorbs 

from metal surfaces at <30 K.38,39 Furthermore, our data shows that the desorption of H2 from Pd 

monomers is significantly lower than the desorption of H2 from Pd(111) which occurs at 310 

K.40 The small desorption peak seen in Figure 2A at 110 K is due to desorption of H2 from Au 

sites as previously reported by Pan et al. who adsorbed H atoms onto Au(111) using a H atom 

source in order to overcome the dissociation barrier.41 Additionally, in order to determine the 

desorption order of H2, we varied the surface coverage of H. With increasing H coverage, the 

desorption peaks shift to lower temperatures indicative of second order desorption as previously 

observed for disordered Pd-Au alloys.28  

 

Figure 2. H2 activation on Pd-Au SAAs. (A) TPD spectra of H2 desorption from a 0.05 ML Pd-
Au(111) SAA after exposure to H2 at 85 K. (B) H2 coverage on varying concentrations of Pd in 
the SAA regime. (C) STM image of Pd-Au(111) SAA exposed to H2 and cooled to 5 K for 
imaging at  -1 V and  1 nA. (D) Desorption traces for m/z 2, 3, and 4 from Pd-Au SAA with 
equivalent H2 and D2 coverages.  
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Figure 2B shows that in the single atom regime (<0.05 ML), the amount of H2 desorbing 

from the surface is proportional to the amount of Pd atoms present in the surface with an average 

of 1.4 ± 0.1 H atoms per Pd atom. One to three H atoms are predicted by DFT to be 

thermodynamically stable in the three-fold hollow sites surrounding Pd monomers in Au.30 Small 

amounts of H atoms spill over from the Pd sites to Au, but we are unable to quantify the amount 

of H2 desorbing from Au since H2 begins desorbing at the start of the temperature ramp.  With 

STM we imaged Pd-Au(111) SAA exposed to H2  and observed localized protrusions in the 

vicinity of edge-dislocations where Pd atoms predominately reside (Figure 2C). In accord with 

our TPD results, we suggest the enlarged appearance of the Pd atoms is due to the presence of H 

atoms at the Pd monomer sites. DFT and STM experiments support the suggestion that H atoms 

are thermodynamically stable on Pd-Au alloys.30,42,43  

To further probe the H2 activation and H atom mobility on Pd-Au SAAs we co-adsorbed 

H2 and D2 onto Pd-Au SAA (Figure 2D). When H2 and D2 were deposited on the SAA, we 

observed the desorption of H-D (m/z = 3).  This scrambling provides direct evidence that Pd-Au 

SAAs are indeed capable of H2 activation at 85 K. Furthermore, when equal amounts of H2 and 

D2 were activated, the H2:HD:D2 product ratio was 1:2:1 demonstrating complete scrambling of 

H and D. As evidenced by the small desorption peak at 110 K, the majority of the H2 or D2 does 

not desorb from the Au sites due to the larger desorption barrier from Au (0.69 eV). However, H 

can diffuse from one Pd atom to another Pd atom by overcoming the lower diffusion barrier onto 

the Au surface. On Au, H and D move very quickly due to the small diffusion barrier on Au of  ~ 

0.07 eV.44 If H atoms were not able to diffuse across the Au surface, we would not have 

observed the complete statistical scrambling of H and D.    
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As a second probe of the surface chemistry of Pd-Au SAAs, we studied the adsorption of 

CO, a common catalyst poison. Figure 3 shows that after exposure of a Pd-Au SAA to CO, a CO 

desorption peak is observed at 270 K corresponding to an adsorption energy of - 0.7 eV 

assuming a pre-exponential factor of 1013 which reasonably compares to DFT calculated 

adsorption energy of -1.34 eV.  This is a significantly lower desorption temperature than 

observed from pure Pd(111) (>450 K).45  CO is also seen to desorb from Au terraces at <170  K 

and Au step edges at 180 K.46  Low temperature desorption of CO from Pd-Au alloys has been 

reported for isolated Pd atoms in Au-Pd(111)32 and Au-Pd-Mo(110).47  Ruff et al. reported that 

the low desorption temperature of CO from Pd-Au alloys is due to the size of the Pd ensembles 

in Au.32 Larger Pd ensembles increase the adsorption energy of CO to the surface. The weak 

adsorption of CO to Pd-Au SAAs that we observe is important for both catalyst and fuel cells 

applications in which active site poisoning by CO can be a serious issue.   
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Figure 3.  TPD traces for H2 (left, 2 m/z) and CO (right, 28 m/z) desorption from Pd-Au SAA 
surfaces exposed to varying amounts of H2 and CO. In panel A, 10 L CO is adsorbed and then 5 
L H2. In panel B, 5 L H2 is exclusively adsorbed. In panel C, 5 L H2 is adsorbed and then 0.1 L 
CO. In panel D, 5 L H2 is adsorbed and then 1 L CO.  

 

We discovered that CO can enhance the spillover of H atoms from Pd sites where H2 

predominantly desorbs from Au. Figure 3 shows TPD traces for the co-adsorption of H and CO 

where the desorption temperature of H2 is dependent on the CO exposure. In the absence of CO, 

H2 desorbs from Pd sites at 175 K (Figure 3B). At sub-saturation coverages of CO (0.1 L CO), 

we observed desorption of H2 from both Pd (160 K) and Au (110 K) sites (Figure 3C). When the 

surface was exposed to 5 L H2 followed by 1 L CO, all H2 desorbs from the surface at 110 K 

since all the Pd atoms are saturated with CO (Figure 3D). Thus, it appears that when CO adsorbs 

on a H covered SAA surface, CO forces the H atoms on to the Au(111) terraces from where they 

desorb at a significantly lower temperature than otherwise observed in the absence of CO.   

To further understand this desorption behavior, periodic DFT calculations were 

performed on unreconstructed Au(111) surfaces with the VASP 5.3.348,49 code employing the 

optB86b-vdW50,51 exchange-correlation functional, which accounts for dispersion forces within 

the vdW-DF scheme of Dion et al52 (see the Supporting Information for more details of the 

computational setup and energy definitions). In our DFT calculations a variety of CO, H and CO 

plus H adsorption structures were considered. With regard to the observed tendency of CO to 

drive H atoms away from the Pd sites of the SAA, our DFT calculations show that there is a 

strong repulsion between adsorbed CO and H. Specifically, when CO is adsorbed on the atop Pd 

site and H is in one of the adjacent three-fold hollow sites that surround the Pd atom there is a ca. 

0.56 eV repulsion between CO and H (Table S3).  This repulsion can be reduced to only 0.01 -



10 
 

 

0.02 eV if the H atom moves away to a proximal hollow site surrounded by only surface Au 

atoms. Therefore, despite H atom spillover being unfavorable, when CO adsorbs to the Pd sites, 

it becomes favorable for H to move onto Au(111). Furthermore, if CO is adsorbed on the surface 

prior to H2, no H2 is observed desorbing from the surface. Therefore, CO binds to the Pd sites 

and blocks the adsorption and activation of H2 which further supports our hypothesis that Pd 

atoms are the sites responsible for H2 activation (Figure 3A). For a CO covered Pd(111), it has 

previously been shown that CO blocks the dissociative adsorption of H2.53 Related to these 

results, previous studies have demonstrated that the adsorption of CO on bimetallic alloys alters 

the desorption behavior of H2. For Pd70Au30(110) alloys, the co-adsorption of CO and H 

increases the desorption temperature of H due to a trapping of near surface H.54 A similar effect 

was observed for Pd-Cu alloys where CO selectively binds to the single Pd atoms in Cu and 

blocks the Pd entrance and exit sites for H2 adsorption.55  These mechanisms, called the 

molecular cork effect, allow H atoms to remain on the surface beyond their normal desorption 

temperature. Additionally, for Co nanoparticles supported on Cu(111), CO forces the spillover of 

H from Co to Cu sites via two-dimensional pressure.56,57 However, the co-adsorption of CO on 

Pd-Au SAAs investigated in this study changes the H2 desorption site. CO adsorption forces the 

H from the Pd sites to Au where it is weakly bound and it desorbs at 110 K; therefore, addition 

of CO alters the exit site for H2 as shown in Figure 4.  
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Figure 4. Schematics of the energy landscapes for H2 adsorption and desorption. (A) H2 
activation energy (Ea),5,58 energy of transition state (ET) and H adsorption energy (ΔE) per H 
atom on monometallic Au, Pd and Pd-Au SAA. Energetics of H2 desorption for Pd-Au SAA (B) 
without and (C) with CO. Schematic illustrates the preferred active sites for H2 dissociation as 
well as preferred adsorption sites for H and CO atoms. Preferred and minor desorption pathways 
are displayed in orange and blue, respectively. In (B) the preferred pathway for H2 desorption is 
via the Pd site. In (C) the Pd site is blocked by CO, so H atoms spillover to Au and then desorb 
from there. All energies are reported relative to H2 in the gas phase, as noted by the dashed 
horizontal lines. 

Combining our TPD results with DFT calculations (Table S1-S3), we have elucidated the 

potential energy landscape for H2 activation, diffusion and desorption from Pd-Au SAAs (Figure 

4). The facile H2 activation and weak adsorption of H atoms observed for Pd-Au SAAs are very 

different from those on monometallic Pd and Au surfaces (Figure 4A). On Au(111), H2 

activation and H adsorption is kinetically and thermodynamically unfavorable, respectively.5,43,58  

In order for H2 from the gas phase to adsorb onto Au(111), it must overcome a large activation 

barrier, Ea which we calculate to be 1.04 eV, in agreement with other DFT calculations5,58 
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Additionally, H adsorption on fcc sites of Au(111) is thermodynamically unfavorable with 

respect to gas phase H2 by 0.14 eV, within the current computational set-up.  H2 adsorption onto 

Pd(111), however, is a non-activated process which is barrier-less, with the resulting H atoms 

adsorbing strongly at fcc sites of Pd(111)  with an adsorption energy of -0.58 eV per H adatom. 

With Pd-Au SAAs, we observed facile H2 activation compared to Au and low temperature 

desorption of H2 compared to Pd. For dilute concentrations of Pd in Au, we report H2 

dissociation at 85 K indicating that Pd monomers greatly reduce the activation barrier for the 

dissociation of H2 compared to Au(111). Our DFT calculations support a reduction in the 

activation energy, since the transition state energy for H2 on Pd-Au SAA is 0.20 eV compared to 

1.04 eV for Au(111).  Yet, the calculated transition state energies do not account for quantum 

nuclear effects which are likely to lead to make hydrogen adsorption more facile. Indeed 

previously, we have shown with path-integral based DFT simulations for atomic and molecular 

hydrogen that because of quantum mechanical tunneling, the effective free energy barrier for 

adsorption/desorption can be lowered. After dissociation, H binds to a Pd-Au fcc site with a 

computed adsorption energy of -0.11 eV. The negative adsorption energies correspond to 

exothermic adsorption processes, which are significantly weaker than when H binds to pristine 

Pd(111) (-0.58 eV) (Figure 4). The smaller adsorption energy of H to Pd-Au sites compared to 

Pd(111) occurs mainly because H binds in 3-fold hollow sites composed of 1 Pd atom and 2 Au 

atoms.32,59  In order to adhere to microscopic reversibility, the adsorption and desorption of H2 

must follow the lowest energy pathway which is via the isolated Pd atoms in Au. The total 

desorption barrier is dependent on the H2 activation energy and H adsorption energy which is 

directly related to the observed desorption temperatures. In order for H2 to desorb from Pd-Au 

SAA, H atoms overcome both the weak adsorption energy of H to the Pd-Au sites and the 
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reduced H2 activation barrier of Pd monomers (Figure 4B). Due to the thermodynamic instability 

of H atoms on Au, H atoms adsorb preferentially at Pd-Au sites, but a small quantity of H atoms 

exist on Au due to spillover from Pd-Au sites. The H atoms that exist on Au desorb directly from 

Au(111) with a desorption barrier of 1.04 eV. Though the overall desorption barrier of H2 from 

Au is less than the desorption barrier from Pd-Au sites, H2 predominately desorbs from Pd-Au 

sites due to the low surface coverage of H on Au.   

When we consider the co-adsorption of H and CO we find that the desorption pathway of 

H2 from the alloyed surface is altered (Figure 4C). Our DFT calculations reveal a greater 

thermodynamic stability for CO to occupy Pd-Au sites instead of H atoms. The adsorption of CO 

(-1.34 eV) on Pd monomers is significantly stronger than the adsorption of H to Pd monomers (-

0.11 eV). Therefore, when a H covered Pd-Au surface is exposed to CO at 85 K, the H atoms are 

forced from the Pd-Au to Au sites.  Although it is thermodynamically unfavorable for H to 

adsorb on pure Au, the H2 recombination barrier traps it there until 110 K at which point H2 

desorbs from Au sites. CO changes the exit sites for H2 from Pd atoms to Au sites without 

violating microscopic reversibility since the addition of CO makes the forward and reverse 

pathways non-equivalent.  Interestingly, CO can force H atoms to spill over from a preferred site 

to a thermodynamically unstable site and remain trapped on the surface by the recombination 

barrier.   

By utilizing well-defined Pd-Au model surfaces, we experimentally demonstrate that Pd 

monomers in a Au(111) surface can activate H2, a process suggested by other experiments to 

require two contiguous Pd atoms. We clearly show by coupling high resolution STM with TPD, 

low concentrations of individual, isolated Pd atoms can dissociate H2 since the concentration of 

adsorbed H atoms is proportional to the surface concentration of Pd atoms in Au. Combining 
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TPD with DFT calculations, we elucidate the energetic landscape for H2 adsorption, activation, 

and desorption from isolated Pd atoms revealing a low temperature pathway for H2 activation 

and release through the Pd atoms with minimal spillover to Au.  The co-adsorption of H2 and D2 

leads to complete scrambling of H and D supporting the dissociation of H2 and the transient 

existence of H atoms on Au. Additionally, Pd-Au SAAs bind CO significantly more weakly than 

Pd(111) (270 K vs. 450 K) which can potentially improve CO tolerance of the catalysts. The 

competitive adsorption of CO and H on the Pd- atoms force H atoms to spillover onto the Au 

surface altering the desorption pathway to an even lower temperature through Au.(110 K vs. 175 

K). Our work demonstrates that individual, isolated Pd atoms in Au allow for facile H2 activation 

and weak adsorption of H atoms, a key requirement for efficient and selective hydrogenation 

catalysis.  

Acknowledgments 

Research at Tufts University was supported by the Department of Energy (DOE FG02-

10ER16170).  Some of the research at UCL leading to these results received financial support 

from the European Research Council under the European Union’s Seventh Framework 

Programme (FP/2007-2013)/ERC Grant Agreement No. 616121 (HeteroIce project) and the 

Royal Society through a Wolfson Research merit Award (A.M.). MD is funded by Engineering 

and Physical Sciences Research Council UK as part of a Doctoral Training Grant. The authors 

acknowledge the use of the UCL Legion High Performance Computing Facility (Legion@UCL), 

and associated support services, in the completion of the computational part of this work. 

 

 



15 
 

 

Supporting Information 

Full description of the experimental methods and computational details including summary of 

calculated adsorption energies and configurations.   

 

References  

 (1)  Hagen, J. Industrial Catalysis, 2nd ed.; Wiley-VCH Verlag GMbH & Co: Weinheim, 
2006. 

(2)  Ritter, J. A.; Ebner, A. D. State-of-the-Art Adsorption and Membrane Separation 
Processes for Hydrogen Production in the Chemical and Petrochemical Industries. Sep. 
Sci. Technol. 2007, 42, 1123–1193. 

(3)  Graetz, J. New Approaches to Hydrogen Storage. Chem. Soc. Rev. 2009, 38, 73–82. 

(4)  Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L. B.; Bollinger, M.; 
Bengaard, H.; Hammer, B.; Sljivancanin, Z.; Mavrikakis, M.; et al. Universality in 
Heterogeneous Catalysis. J. Catal. 2002, 209, 275–278. 

(5)  Hammer, B.; Nørskov, J. K. Why Gold Is the Noblest of All the Metals. Nature 1995, 376, 
238–240. 

(6)  Greeley, J.; Mavrikakis, M. Alloy Catalysts Designed from First Principles. Nat. Mater. 
2004, 3, 810–815. 

(7)  Fu, Q.; Luo, Y. Catalytic Activity of Single Transition-Metal Atom Doped in Cu(111) 
Surface for Heterogeneous Hydrogenation. J. Phys. Chem. C. 2013, 117, 14618–14624. 

(8)  Skoplyak, O.; Barteau, M. A.; Chen, J. G. Reforming of Oxygenates for H2 Production: 
Correlating Reactivity of Ethylene Glycol and Ethanol on Pt(111) and Ni/Pt(111) with 
Surface D-Band Center. J. Phys. Chem. B 2006, 110, 1686–1694. 

(9)  Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt Core-Shell 
Nanoparticles for Preferential Oxidation of Carbon Monoxide in Hydrogen. Nat. Mater. 
2008, 7, 333–338. 

(10)  Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; 
Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated Metal Atom 
Geometries as a Strategy for Selective Heterogeneous Hydrogenations. Science 2012, 335, 
1209–1212. 



16 
 

 

(11)  Boucher, M. B.; Zugic, B.; Cladaras, G.; Kammert, J.; Marcinkowski, M. D.; Lawton, T. 
J.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Single Atom Alloy Surface Analogs in 
Pd0.18Cu15 Nanoparticles for Selective Hydrogenation Reactions. Phys. Chem. Chem. 
Phys. 2013, 15, 12187–12196. 

(12)  Pei, G. X.; Liu, X. Y.; Wang, A.; Li, L.; Huang, Y.; Zhang, T.; Lee, J. W.; Jang, B. W. L.; 
Mou, C.-Y. Promotional Effect of Pd Single Atoms on Au Nanoparticles Supported on 
Silica for the Selective Hydrogenation of Acetylene in Excess Ethylene. New. J. Chem. 
2014, 38, 2043–2051. 

(13)  Zhang, L.; Wang, A.; Miller, T.; Liu, X.; Yang, X.; Wang, W.; Li, L.; Huang, Y.; Mou, 
C.; Zhang, T. Efficient and Durable Au Alloyed Pd Single-Atom Catalyst for the Ullmann 
Reaction of Aryl Chlorides in Water. ACS Catal. 2014, 4, 1546–1553. 

(14)  Cao, X.; Ji, Y.; Luo, Y. Dehydrogenation of Propane to Propylene by a Pd/Cu Single-
Atom Catalyst: Insight from First-Principles Calculations. J. Phys. Chem. C 2015, 119, 
1016–1023. 

(15)  Claus, P. Heterogeneously Catalysed Hydrogenation Using Gold Catalysts. Appl. Catal. 
2005, 291, 222–229. 

(16)  Mcewan, L.; Julius, M.; Roberts, S.; Fletcher, J. C. Q. A Review of the Use of Gold 
Catalysts in Selective Hydrogenation Reactions. Gold Bull. 2010, 43, 298–306. 

(17)  Haruta, M. Size- and Support-Dependency in the Catalysis of Gold. Catal. Today 1997, 
861, 153–166. 

(18)  Mohr, C.; Hofmeister, H.; Radnik, J.; Claus, P. Identification of Active Sites in Gold-
Catalyzed Hydrogenation of Acrolein. J. Am. Chem. Soc. 2003, 103, 178–180. 

(19)  Chen, M.; Kumar, D.; Yi, C.-W.; Goodman, D. W. The Promotional Effect of Gold in 
Catalysis by Palladium-Gold. Science 2005, 310 (5746), 291–293. 

(20)  Edwards, J. K.; Solsona, B.; Ntainjua N, E.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; 
Hutchings, G. J. Switching off Hydrogen Peroxide Hydrogenation in the Direct Synthesis 
Process. Science 2009, 323, 1037–1041. 

(21)  Choudhary, T. V; Sivadinarayana, C.; Datye, A. K.; Kumar, D.; Goodman, D. W. 
Acetylene Hydrogenation on Au-Based Catalysts. Catal. Letters 2003, 86, 1–8. 

(22)  Hugon, A.; Delannoy, L.; Krafft, J. M.; Louis, C. Selective Hydrogenation of 1,3-
Butadiene in the Presence of an Excess of Alkenes over Supported Bimetallic 
Gold−palladium Catalysts. J. Phys. Chem. C. 2010, 114, 10823–10835. 



17 
 

 

(23)  Gao, F.; Wang, Y.; Goodman, D. W. CO Oxidation over AuPd(100) from Ultrahigh 
Vacuum to near-Atmospheric Pressures: The Critical Role of Contiguous Pd Atoms. J. 
Am. Chem. Soc. 2009, 131, 5734–5735. 

(24)  Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. 
a; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Solvent-Free Oxidation of 
Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science 2006, 311, 362–365. 

(25)  Rodriguez, J. A.; Rodriguex, J. A. Physical and Chemical Properties of Bimetallic 
Surfaces. Surf. Sci. Rep. 1996, 24, 223–287. 

(26)  Groß, A. Reactivity of Bimetallic Systems Studied from First Principles. Top. Catal. 2006, 
37, 29–39. 

(27)  Neurock, M.; Tysoe, W. T. Mechanistic Insights in the Catalytic Synthesis of Vinyl 
Ccetate on Palladium and Gold/palladium Alloy Surfaces. Top. Catal. 2013, 56, 1314–
1332. 

(28)  Yu, W.-Y.; Mullen, G. M.; Mullins, C. B. Hydrogen Adsorption and Absorption with Pd-
Au Bimetallic Surfaces. J. Phys. Chem. C 2013, 117, 19535–19543. 

(29)  Maroun, F.; Ozanam, F.; Magnussen, O. M.; Behm, R. J. The Role of Atomic Ensembles 
in the Reactivity of Bimetallic Electrocatalysts. Science 2001, 293, 1811–1814. 

(30)  Venkatachalam, S.; Jacob, T. Hydrogen Adsorption on Pd-Containing Au(111) Bimetallic 
Surfaces. PCCP 2009, 11 (17), 3010. 

(31)  Baber, A. E.; Tierney, H. L.; Sykes, E. C. H. Atomic-Scale Geometry and Electronic 
Structure of Catalytically Important Pd/Au Alloys. ACS Nano. 2010, 4, 1637–1645. 

(32)  Ruff, M.; Takehiro, N.; Liu, P.; Nørskov, J. K.; Behm, R. J. Size-Specific Chemistry on 
Bimetallic Surfaces: A Combined Experimental and Theoretical Study. ChemPhysChem 
2007, 8, 2068–2071. 

(33)  Casari, C.; Foglio, S.; Siviero, F.; Li Bassi, A.; Passoni, M.; Bottani, C. Direct 
Observation of the Basic Mechanisms of Pd Island Nucleation on Au(111). Phys. Rev. B 
2009, 79, 1–9. 

(34)  Barth, J. V.; Brune, H.; Ertl, G.; Behm, R. J. Scanning Tunneling Microscopy 
Observations on the Reconstructed Au(111) Surface: Atomic Structure, Long-Range 
Superstructure, Rotational Domains, and Surface Defects. Phys. Rev. B 1990, 42, 9307–
9318. 

(35)  Meyer, J. A.; Baikie, I. D.; Kopatzki, E.; Behm, R. J. Preferential Island Nucleation at the 
Elbows of the Au(111) Herringbone Reconstruction through Place Exchange. Surf. Sci. 
1996, 365, 647–651. 



18 
 

 

(36)  Yudanov, I. V; Neyman, K. M. Stabilization of Au at Edges of Bimetallic PdAu 
Nanocrystallites. Phys. Chem. Chem. Phys. 2010, 12, 5094–5100. 

(37)  Yuan, D.; Gong, X.; Wu, R. Atomic Configurations of Pd Atoms in PdAu(111) Bimetallic 
Surfaces Investigated Using the First-Principles Pseudopotential Plane Wave Approach. 
Phys. Rev. B 2007, 75, 085428–1 – 5. 

(38)  Sugimoto, T.; Fukutani, K. Effects of Rotational-Symmetry Breaking on Physisorption of 
Ortho- and Para- H2 on Ag(111). Phys. Rev. Lett. 2014, 112, 146101–1 – 5. 

(39)  Andersson, S.; Persson, M. Crystal-Face Dependence of Physisorption Potentials. Phys. 
Rev. B 1993, 48, 5685–5688. 

(40)  Gdowski, G. E.; Felter, T. E.; Stulen, R. H. Effect of Surface Temperature on the Sorption 
of Hydrogen on Pd(111). Surf. Sci. 1987, 181, L147–L155. 

(41)  Pan, M.; Flaherty, D. W.; Mullins, C. B. Low-Temperature Hydrogenation of 
Acetaldehyde to Ethanol on H-Precovered Au(111). J. Phys. Chem. Lett. 2011, 2, 1363–
1367. 

(42)  Baber, A. E.; Tierney, H. L.; Lawton, T. J.; Sykes, E. C. H. An Atomic-Scale View of 
Palladium Alloys and Their Ability to Dissociate Molecular Hydrogen. Chem. Cat. Chem 
2011, 3, 607–614. 

(43)  Tierney, H. L.; Baber, A. E.; Kitchin, J. R.; Sykes, E. C. H. Hydrogen Dissociation and 
Spillover on Individual Isolated Palladium Atoms. Phys. Rev. Lett. 2009, 103, 246102–1 – 
4. 

(44)  Pan, M.; Pozun, Z. D.; Yu, W.-Y.; Henkelman, G.; Mullins, C. B. Structure Revealing 
H/D Exchange with Co-Adsorbed Hydrogen and Water on Gold. J. Phys. Chem. Lett. 
2012, 3, 1894–1899. 

(45)  Guo, X.; Yates, J. T. Dependence of Effective Desorption Kinetic Parameters on Surface 
Coverage and Adsorption Temperature: CO on Pd(111). J. Chem. Phys. 1989, 90, 6761–
6766. 

(46)  Kim, J.; Samano, E.; Koel, B. E. CO Adsorption and Reaction on Clean and Oxygen-
Covered Au(211) Surfaces. J. Phys. Chem. B 2006, 110, 17512–17517. 

(47)  Yi, C.-W.; Luo, K.; Wei, T.; Goodman, D. W. The Composition and Structure of Pd-Au 
Surfaces. J. Phys. Chem. B 2005, 109, 18535–18540. 

(48)  Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals 
and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. 



19 
 

 

(49)  Kresse, G.; Furthmuller, J. Efficient Iterative Schemes for Ab Initio Total-Energy 
Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54 (16), 11169–11186. 

(50)  Klimes, J.; Bowler, D. R.; Michaelides, A. Chemical Accuracy for the Van Der Waals 
Density Functional. J. Phys. Condens. Matter 2010, 22 (2), 22201. 

(51)  Klimes, J.; Bowler, D. R.; Michaelides, A. Van Der Waals Density Functionals Applied to 
Solids. Phys. Rev. B 2011, 83 (19), 195131. 

(52)  Dion, M.; Rydberg, H.; Schroder, E.; Langreth, D. C.; Lundqvist, B. I. Van Der Waals 
Density Functional for General Geometries. Phys. Rev. Lett. 2004, 92 (24), 246401. 

(53)  Rupprechter, G.; Morkel, M.; Freund, H.-J.; Hirschl, R. Sum Frequency Generation and 
Density Functional Studies of CO–H Interaction and Hydrogen Bulk Dissolution on 
Pd(111). Surf. Sci. 2004, 554, 43–59. 

(54)  Ogura, S.; Okada, M.; Fukutani, K. Near-Surface Accumulation of Hydrogen and CO 
Blocking Effects on a Pd − Au Alloy. J. Phys. Chem. C 2013, 117, 9366–9371. 

(55)  Marcinkowski, M. D.; Jewell, A. D.; Stamatakis, M.; Boucher, M. B.; Lewis, E. A.; 
Murphy, C. J.; Kyriakou, G.; Sykes, E. C. H. Controlling a Spillover Pathway with the 
Molecular Cork Effect. Nat. Mater. 2013, 12, 523–528. 

(56)  Lewis, E. A.; Le, D.; Jewell, A. D.; Murphy, C. J.; Rahman, T. S.; Sykes, E. C. H. 
Visualization of Compression and Spillover in a Coadsorbed System: Syngas on Cobalt 
Nanoparticles. ACS Nano 2013, 7, 4384–4392. 

(57)  Lewis, E. a.; Marcinkowski, M. D.; Murphy, C. J.; Liriano, M. L.; Sykes, E. C. H. 
Hydrogen Dissociation, Spillover, and Desorption from Cu-Supported Co Nanoparticles. 
J. Phys. Chem. Lett. 2014, 5, 3380–3385. 

(58)  Campbell, C. T. Bimetallic Surface Chemistry. Annu. Rev. Phys. Chem. 1990, 41, 775–
837. 

(59)  Boscoboinik, J. a.; Calaza, F. C.; Garvey, M. T.; Tysoe, W. T. Identification of Adsorption 
Ensembles on Bimetallic Alloys. J. Phys. Chem. C 2010, 114, 1875–1880.  

 


