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ABSTRACT: 

2D radioactive 125I monolayers are a recent development that combine the fields of 

radiochemistry and nanoscience. These Au supported monolayers show great promise for 

understanding the local interaction of radiation with 2D molecular layers, offer different 

directions for surface patterning, and enhance the emission of chemically and biologically 

relevant low energy electrons. However, the elemental composition of these monolayers 

is in constant flux due to the nuclear transmutation of 125I to 125Te and their precise 

composition and stability under ambient conditions has yet to be elucidated. Unlike I, 

which is stable and unreactive when bound to Au, the newly formed Te atoms would be 

expected to be more reactive. We have used electron emission and X-ray photoelectron 

spectroscopy (XPS) to quantify the emitted electron energies, track the film composition 

in vacuum and the effect of exposure to ambient conditions. Our results reveal that the 

Auger electrons emitted during the ultra-fast radioactive decay process have a kinetic 

energy corresponding to neutral Te. By combining XPS and scanning tunneling 

microscopy experiments with density functional theory we are able to identify the 

reaction of newly formed Te to TeO2 and its subsequent dimerization. The fact that the 

Te2O4 units stay intact during major lateral rearrangement of the monolayer illustrates 

their stability. These results provide an atomic-scale picture of the composition and 

mobility of surface species in a radioactive monolayer as well as an understanding of the 

stability of the films under ambient conditions, which is a critical aspect in their future 

applications. 
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The interaction of high energy radiation (γ-rays, X-rays, α and β particles) with matter 

produces not only primary impact damage, but also large numbers of non-thermal 

secondary electrons (<10 eV) along the radiation track.1–3 Although these electrons are 

below the ionization energies of biologically relevant molecules, they initiate radiation-

induced chemical reactions, making them arguably the most important species in 

radiation chemistry.2,4,5 The bond breaking mechanism at energies less than 10 eV is 

primarily from dissociative electron attachment, during which a short-lived negative ion 

of the molecule is formed and then dissociates into a radical fragment and an anionic 

fragment.6,7 At higher energies, electron impact excitation (> 6 eV) and ionization (> 10 

eV) events begin to occur. Even if the electron does not react directly with e.g. a DNA 

molecule, indirect effects such as the formation of solvated electrons can lead to genome 

damage.8–11 As a result of their high reactivity and short path length, any source of low 

energy electrons must be within ~10 nm of a target to induce reaction chemistry.12 As a 

method to escape the need for an external radiation source to power the production of low 

energy electrons, Pronschinske et al. reported on single-atom thick, ordered radioactive 

films of 125I on gold that can be constructed on the same nanometer scale as a low-energy 

electron’s range. These films provide a self-sustaining source of copious amounts of low 

energy electrons in the 0-10 eV range.1 Electrons in this low energy range have been 

shown to cause both DNA single and double strand breaks in electron stimulated 

desorption experiments and are also implicated in the increased anti-tumor efficacy of 

gold nanoparticles irradiated with X-rays.13–16 As a first step towards application of this 

new approach for local low energy electron delivery, e.g. conjugated to gold 

nanoparticles,17–23 characteristics such as the radioactive film stability and reactivity in an 

ambient environment must be understood. 

In terms of applications as a self-sustaining nano-emitter, given the massive amount of 

energy released during the nuclear decay of radioactive 125I (185 keV) one must consider 

the stability of the material before, during, and after nuclear decay as well as the effect of 

ambient conditions. The 125I/Au combination is well suited for application because of the 

strong I-Au bond24,25 and negligible neutrino-induced nuclear recoil of 125I (0.1 eV). This 

recoil energy is very low compared to other isotopes that decay by electron capture (EC), 
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or through emission of an α or β particle.26–30 The decay of 125I via EC results in a nuclear 

proton and a core-level electron being converted to a neutron with the release of an 

electron neutrino, and hence elemental transmutation of 125I into 125Te. While there have 

been some studies of Te films on Au(111), they have mostly focused on depositing the 

element with electrochemical control.31,32 Another potential chemical instability resulting 

from nuclear decay is Coulomb explosion that results from slow neutralization of the 

radionuclide following ultra-fast emission of copious amounts of its valence electrons,33–

36 which for 125I can be upwards of 20 electrons as predicted by Monte Carlo studies.37 

When such highly charged radionuclides have insufficient electronic coupling to their 

environment, for example 55Fe-containing alkanethiol SAMs, their rate of neutralization 

falls below the timescale of atomic motion. This leads to neighboring atoms becoming 

positively charged and causing local damage through electrostatic repulsion and ejection 

of ions and charged molecular fragments.33

In this study we use X-ray photoelectron spectroscopy (XPS) to probe the surface 

composition of radioactive 125I /Au films over time and after exposure to air. This 

technique allows us to quantify the elemental species and their oxidation states with high 

surface sensitivity.38 Density functional theory (DFT) calculations were employed to 

quantify the binding strength of both the radionuclide 125I and daughter 125Te to the Au 

substrate. Furthermore, we used DFT calculations to examine the reactivity of the newly 

formed Te atoms with a range of common molecules present under ambient conditions. 

This work revealed that the most exothermic reaction involved oxidation of Te to TeO2. 

This oxidized Te (in a Te4+ oxidation state) was observed by XPS after film exposure to 

ambient conditions and scanning tunneling microscopy (STM) revealed the presence of 

isolated dimers in the film which DFT predicted are thermodynamically preferred Te2O4 

species formed by two interacting TeO2 units. Overall, these results look promising in 

terms of future applications of 125I/Au devices as both the radionuclide and daughter 

product remain strongly bound to the Au surface during both nuclear decay and exposure 

to ambient conditions. 

RESULTS AND DISCUSSION
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125I/Au(111) samples were made using the established ambient drop-casting method at 

PerkinElmer (Billerica, MA); a photograph of the drop-casting procedure is shown in 

Figure 1a.1 The samples were then transferred to Tufts and Carnegie Mellon Universities 

under ambient conditions over a period of 1-2 days. Figure 1b shows a high-resolution 

STM image of a sample in which the I atoms of the monolayer film are clearly resolved. 

Single atom depression are randomly distributed in the monolayer structure that 

correspond to Te atoms formed from the nuclear transmutation of 125I.1 Given the copious 

amounts of electrons that are emitted by these samples we will first discuss our electron 

emission studies that report on the charge state of the decaying atoms before moving on 

to measurements of the composition and oxidation by XPS and DFT modeling of various 

reaction pathways.

Figure 1 (A) Photograph of the deposition of an aqueous solution of Na125I (161 µM) on 

Au(111) using an ambient dropcasting method (B) The resulting 125I monolayer as imaged 

using scanning tunneling microscopy (V = -0.4 V, I = 0.1 nA, scale bar = 2 nm). 

The radioactive decay of 125I (half-life = 60 days) is a multi-step process consisting of (in 

order) EC, an electron emission cascade, relaxation of the excited 125Te nucleus, and a 

second electron emission cascade. These cascades are driven by Auger relaxations, two-
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electron processes in which an ejected electron leaves behind a hole which is filled by a 

higher lying electron and the additional energy is released in the form of a second 

electron. This second electron is called the Auger electron and has a kinetic energy 

dependent only on the charge state of the atom and not the initial excitation energy. The 

MNN Auger transition of the element Te is lower in energy than most of the emitted 

electrons and typically occurs near the end of the electron emission cascade. By placing 

the 125I/Au samples in ultra-high vacuum we are able to use a concentric hemispherical 

electron energy analyzer to measure the energy of these Auger electrons and gain a 

window into the charge state of the newly formed Te atom during the ultra-fast electron 

emission cascades. Electron emission from radioactive decay of 125I occurs in two 

stages.46 Briefly, in the first step called electron capture a core electron tunnels into the 

nucleus and combines with a proton. This leaves a core hole which releases its energy in 

a 0.1 -10 fs timescale via X-rays and Auger electrons. The Te nucleus is left in an excited 

state with a half-life of ~ 2 ns which, 7% of the time, decays via gamma ray emission. In 

the other 93% of cases the excess nuclear energy is released via ejection of an inner shell 

electron, leaving another core hole which decays via a similar cascade of events to the 

first step. Therefore, as mentioned in the introduction, charging of the newly formed Te 

atom depends on the relative rates of electron emission and neutralization from 

surrounding Au atoms. Given that Auger emission is dependent only on the charge state 

of the atom and not the source of the initial excitation, the kinetic energy of these 

transitions provide direct insight into how fast the newly formed Te atom can neutralize 

during these ultra-fast cascades. 

In Figure 2 we observe the Te MNN Auger electron emission peaks at kinetic energies of 

483 and 493 eV, which is at the same energy as a neutral Te atom.47 Based on literature 

photoemission data, one can expect that the Te MNN Auger peak will shift by around 

-1 eV (in kinetic energy) for each additional +1 charge on the Te atom.47 Monte Carlo 

studies of the decay of 125I atoms have shown that, on average, ~13 electrons are ejected 

per decay event33. Therefore, if the 125Te were charging up to +13 after being formed from 
125I, the Te MNN Auger peak would appear drastically shifted to around 470 eV. 

However, it is clear from the data in Figure 2 that despite the ultra-fast electron emission 
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cascades following a 125I EC event, the daughter Te atom does not charge up. In addition 

to the two predominant Te0 MNN Auger electron emission peaks we observe a smaller 

pair of peaks at 503 and 514 eV corresponding to I MNN Auger electron emission peaks. 

This would infer that some of the surrounding 125I atoms that have not yet decayed are 

excited by radiation in the form of either photons or electrons emitted during the 

radioactive decay. 

Figure 2 Kinetic energy spectrum of electron emission during radioactive decay of 125I on 

Au(111). Te MNN and I MNN Auger electron emission peaks are marked. 

In order to further our understanding of the lack of charging, i.e. fast neutralization of the 

Te atom undergoing the electron emission cascades by Au we used DFT to examine the 

nature of the Te/Au interaction in the I/Te/Au(111) overlayer. To this end we examined 

how the valence electron density rearranges upon formation of the Te/Au bond. This is 

shown in Figure 3 where we plot how the electron density rearranges upon subtracting 

from the total density of the complete I/Te/Au(111) overlayer the density of the I/Au(111) 

overlayer and an isolated Te atom.  This plot therefore captures how the valence electron 

density rearranges upon formation of the Te-Au adsorption bond in the presence of the 

I/Au(111) overlayer. From Figure 3 we can identify quite significant charge 

rearrangement around the Te and three Au atoms to which it is directly bonded. There is 
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also smaller but not insignificant rearrangement of electron density in some of the second 

layer Au atoms. The charge rearrangement implies that mixed Te(p)-Au(d) states have 

formed and that there is a degree of coupling between Te and the Au substrate. Indeed we 

have directly confirmed the formation of mixed Te(p)-Au(d) states by analyzing the 

individual Kohn-Sham states in the system. We show this data in the SI in Figure SI:2. 

This orbital mixing and fairly long range charge rearrangement means that during the 

nuclear decay induced electron emission cascade the positive charge created at the Te 

atom will be spread out over many Au atoms and neutralized by the electron sea of the 

extended Au surface to such an extent that the effective charge on the Te atom is zero, as 

measured experimentally.

Figure 3 Electronic density rearrangement upon Te adsorption on Au(111). Specifically 

Δρ = ρtotal – ρI/Au – ρTe is plotted, where ρtotal is the charge density of the complete 

I/Te/Au(111) structure, ρI/Au the charge density of the I/Au(111) overlayer and ρTe the 

charge density of an isolated Te atom. The Te atom is located in a hollow site and 

interacts strongly with its three closest Au neighbors. Regions of charge increase are 

shown in blue, areas with charge depletion are shown in yellow, both at an isovalue of 
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0.002 e/Å³. The charge density difference from a top view and side view are shown in the 

upper and lower panels, respectively. For clarity, only the top two layers of the gold slab 

are shown. Gold atoms are colored in gold, iodine atoms in purple. The Te atom is 

located at the center of the charge density difference plot.  

By working in UHV we are able to study the as-formed oxidation state of the 125Te atom 

before, and then after, exposure to ambient conditions. After a few weeks of 125I 

radioactive decay in UHV, repeated XPS measurements reveal that that the daughter Te 

3d core level doublet that grows over time is at 573 eV, corresponding to neutral Te0 as 

shown in Figure 4.48,49 All charge density decomposition schemes involve a certain level 

of arbitrariness, however, performing a  Bader population analysis of our DFT adsorption 

system yields a partial charge on the Te bound to Au of +0.22 e, which is in good 

agreement with our XPS measurement and is consistent with the similar 

electronegativities of Au and Te. Importantly, from our DFT calculations we see that the 

newly formed 125Te is even more tightly bound to a bare Au(111) surface (3.41 eV) than 
125I (2.21 eV) which explains the film’s stability during radioactive decay as the nuclear 

recoil energy is ~0.1 eV. If the recoil energy was greater than the Te-Au bond strength the 

daughter Te atom could leave the surface.

The 125Te atoms in the film (Te being one group to the left of I in the periodic table) are 

under-coordinated and, like the surface of bulk Te, are more susceptible to chemical 

reactions. Upon arrival from PerkinElmer the 125I samples always display a small Te 3d 

doublet at 576 eV and 586 eV,48,49 which corresponds to Te4+ as shown in Figure 4 which 

is formed in transit. Through incremental exposure to ambient conditions and 

measurement by XPS we see that the newly formed Te0 undergoes oxidation to the Te4+ 

oxidation state. This reaction is kinetically limited as it takes about 45 hr to fully oxidize 

the surface Te. To understand the details of this oxidation process we considered a range 

of reactions between (newly formed) Te and common species present under ambient 

conditions such as O2, CO, H2O and H2 with DFT (see SI for full details). Formation 

energies of all the species which could potentially form from reaction with atmospheric 

compounds are summarized in table SI:1. The most stable reaction product for each 
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reaction is shown in figure SI:1. Our DFT calculations indicate that the formation of TeO2 

starting from a Te atom adsorbed on Au and an oxygen molecule is exothermic by -1.24 

eV. None of the other reactions studied with DFT were as thermodynamically favorable 

as oxidation by molecular O2. Based on the XPS and DFT results we therefore assign the 

oxidized species to be TeO2. 

Figure 4 XPS spectra showing nuclear transmutation of I to Te and the effect of exposure 

to air. The upper plot shows the I 3d core level signals decreasing and the Te0+ core levels 

increasing over time as the 125I decays into 125Te by electron capture. The bottom plot 

shows the formation of Te4+ caused by exposing a surface of Te0 formed in vacuum to 

ambient conditions for a number of hours.

Further support of the ambient oxidation product of Te being TeO2 comes from DFT 

simulated STM images. In Figure 5 we compare the DFT simulated STM images of a Te 
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atom, a single TeO2 species and a Te2O4 dimer in a I monolayer on Au(111).  Only the 

simulated image for TeO2 dimers matches the STM experiment (shown in Figure 6); we 

therefore assign each of the protrusions seen in the STM images as TeO2 species. The 

DFT computed energy difference between non-interacting TeO2 units on Au(111) and 

TeO2 dimers on Au(111) is −0.1 eV, which explains why nearly all of the TeO2 imaged 

with STM in the form of dimers. Figure 5 (c) shows that the two TeO2 molecules are held 

together by a weak intermolecular Te-O bond. At 2.45 Å this Te-O bond is significantly 

longer that the intramolecular bond which is just 1.90 Å. 
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Figure 5: (a) DFT optimized structure of a Te atom (green) in an I (violet) overlayer with 

its corresponding simulated STM image. The Te atom appears as a depression relative to 

the surrounding I atoms. (b) Single TeO2 species in an I overlayer which appears as a 

protrusion compared to the I atoms. (c) Thermodynamically preferred Te2O4  and 

corresponding simulated STM. The dimer appears as two bright spots relative to the I 

atoms. Simulated STM images are shown for a constant LDOS of 1e-09e/Å3.
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During time-lapse STM imaging of the 125I/Au(111) samples we observed tip-induced 

diffusion of the I overlayer as seen in Figure 6. The experiments were performed at 5 K, 

therefore we can rule out any effect of thermal motion. The TeO2 dimers served as 

“markers” in the I film that allowed us to assess the degree of mobility which is not 

possible in pure I overlayers on Au as there are no reference points in the overlayer. 

Figure 6 shows a sequence of these time-lapse images in which a TeO2 dimer moves with 

the I overlayer. We never observed the separation of the TeO2 dimers during these 

experiments, which supports their attractive interaction as predicted by DFT. 

Figure 6 Diffusion of TeO2 dimer through the I monolayer. Shown is a series of 

consecutive STM images taken over a set location; (V = 0.1 V, I = 0.1 nA, and scale bar 

is 1 nm).

In summary, we find that 125I monolayer films on Au(111) are remarkably stable when 

considering the ultra-fast release of 185 keV of nuclear energy. This is due to the small 
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nuclear recoil energy and strong hybridization with the metallic surface that prevents 

charging of the daughter Te atom during its electron emission cascades. DFT calculations 

reveal that the daughter Te atom is bound to the Au surface more strongly than the I, 

which itself forms a stable monolayer that is unreactive under ambient conditions. While 

Te is formed in its zero oxidation state XPS reveals that exposure to ambient conditions 

causes oxidation to the 4+ oxidation state. Extensive DFT calculations indicate that 

reaction with molecular oxygen is exothermic and leads to the formation of TeO2, 

consistent with the 4+ oxidation state measured by XPS. STM imaging and DFT 

simulated images indicate that the surface-bound TeO2 units pair up as Te2O4 dimers 

which, under the influence of the STM tip, freely diffuse with the I overlayer. DFT 

calculations show that dimer formation is exothermic as evidenced by their predominance 

in the STM images. These data indicate that radioactive 125I films are stable after 

exposure to ambient conditions and that the 125Te daughter atoms are oxidized, but remain 

surface bound when exposed to ambient conditions. 

CONCLUSIONS

The robust nature of the 125I films during nuclear transmutation of I to Te bodes well for 

the application of radioactive films on both planar and Au nanoparticle substrates. The 

fact that the radioactive decay occurs via electron capture with low recoil energy renders 

these films robust with respect to autoradiolysis that plagues many α and β emitter 

constructs. Despite the importance of radioactive decay in a wide range of technologies 

there is currently no other known air-stable 2D radiation sources. The reduced 

dimensionality of these surface-bound films provides the ability to study high energy 

nuclear processes safely and enables the microscopic details of radiation chemistry, 

biological degradation and material damage to be quantified. The enhanced electron 

emission results offer the intriguing prospect of using metal nanoparticle supported 

radioisotopes for the enhanced, targeted electron dosing of tumor cells with short range, 

chemically active low energy electrons. We envisage a new field that combines 

nanoscience with radioisotopes enabling understanding of many aspects of 

radiochemistry, physics and biology, as well as offering new constructs for in vivo 

radioisotope delivery for cancer therapy. Furthermore, a microscopic picture of how 
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radioactive atoms can be assembled on surfaces/nanoparticles, how they decay, and how 

the resulting radiation affects their local molecular environment will provide fundamental 

knowledge about both materials and biological damage, uncover new non-equilibrium 

chemistries, fuel the discovery of methods for constructing nanoscale radioactive 

materials, and enable new technologies.
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MATERIALS AND METHODS
Experimental 

125I/Au(111) samples were made using the established ambient drop-casting method at 

PerkinElmer (Billerica, MA); drop-casting procedure and the resulting monolayer are 

shown in Figure 1.1 A solution of Na125I (161 µM) and NaOH in H2O (pH 9) is dropped 

onto a clean Au(111) surface and dried under a constant stream of N2 gas.  The 125I 

spontaneously chemisorbs to the Au(111) surface, saturating when a well-ordered single 

layer of 125I is formed. After the droplet containing 125I has dried, the sample is rinsed with 

methanol to remove any physisorbed material. While the deposition solution has a 

radionuclide purity of > 99.9%, it typically has an age at the time of deposition that can 

result in up to 30% of the 125I having already decayed into 125Te i.e. a lower chemical 

purity. However, despite the high concentration of Te in the deposition solution, we find 

that the amount of Te on our 125I /Au samples when they first arrive at Tufts University (a 

few days after deposition) is no more than one would expect from the decay of a perfect 
125I monolayer. This is because the newly formed Te atoms in the deposition solution are 

formed in a highly charged state that makes them react with water in the surrounding 

solution to form telluric acid/hydrated oxide which does not bind to Au. We imaged the 
125I/Au(111) film structure with an OmicronNanotechnology low temperature STM 

operating at 5 K. XPS as a function of time were taken at Tufts using a 5-channel 

hemispherical energy analyzer. A 125I/Au(111) sample was also sent to Carnegie Mellon 

University and used to measure high-resolution electron emission spectra using a 

hemispherical energy analyzer in a ThermoFisher ThetaProbe instrument. Given the 

importance of knowing the exact kinetic energy of the emitted electrons, and hence the 

oxidation state of the decaying atom, a total of 1500 individual scans were performed 

across the kinetic energy range from 430-530 eV with 190 eV pass energy (constant 

analyzer energy). Each scan was taken using 0.2 eV steps with a 100 ms dwell time per 

step. The kinetic energy calibration of the detector was verified by measuring the kinetic 

energy of electrons produced from a clean Ag standard by excitation with 

monochromated Al K-α X-rays. The Ag3p3/2 and Ag3d5/2 peaks were found to lie within 

±0.1 eV of the expected positions for metallic Ag of 913.7 and 1118.4 eV, respectively 

(corresponding to binding energies of 572.9 and 368.2 eV, respectively).
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Theoretical

Density functional theory (DFT) calculations were performed with the Perdew-Burke-

Ernzerhof (PBE)39,40 exchange-correlation functional. The periodic plane wave DFT code 

VASP41,42 was used to carry out all spin polarized first principle calculations. Core 

electrons were replaced by projector augmented wave (PAW) potentials43 and valence 

electrons were expanded in plane waves with a cut-off energy of 400 eV. A 4 atomic layer 

thick slab was used to model an unreconstructed Au(111) surface. The bottom two layers 

were kept fixed at their bulk truncated values, every other atom was allowed to relax. 

Slabs were separated along the surface normal with a 15 Å thick vacuum region and a 

dipole correction along the surface normal was applied for all calculations. Total energies 

were converged to a 1.0×10-6 eV accuracy, ions were relaxed until the forces acting on 

them were below 0.005 eV/Å. For all formation energy calculations a 2√3×2√3 unit cell 

was used and to explore the tendency of TeO2 molecules to dimerize a 4√3×4√3 cell was 

used. In each case a Monkhorst-Pack k-point mesh44 equivalent to at least a 6×6×1 mesh 

per √3×√3 unit cell was used. STM images were calculated with a higher level of k point 

convergence, specifically a 24×24×1 Monkhorst-Pack k-point mesh per √3×√3 unit cell 

at a -0.1 eV (i.e. looking at occupied states) bias using the Tersoff-Hamann 

approximation45 with an s-like tip.  Additional information on the calculations performed 

is given in the supporting information.
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