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High-energy radiation has been utilized for decades,  however,  the role of low-energy electrons created 

during  irradiation  has  only  recently  begun  to  be  appreciated1,2.  Low-energy  electrons  are  the  most 

important  component  of  radiation  damage  in  biological  environments  because  they  have  subcellular 

ranges,  interact  destructively  with  chemical  bonds,  and  are  the  most  abundant  product  of  ionizing 

particles in tissue. However, methods for generating them locally without external stimulation do not exist. 

To address this we synthesized one atom thick films of the radioactive isotope 125I on gold that are stable 

under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, 

allowed us to directly observe nuclear transmutation of individual  125I atoms into  125Te, and explain the 

surprising stability of the 2-D film as it underwent radioactive decay. The metal interface geometry induces 

a 600% amplification of low-energy electron emission (<10 eV)3 compared to atomic  125I. Therefore, this 

enhancement  of  biologically  active  low  energy  electrons  opens  a  new  direction  for  highly  targeted 

nanoparticle therapies4–6.

Nuclear  decay is  one of the  most  extreme processes  and is  central  to  a  range of  fields including energy,  

medicine, imaging, labelling, archaeology and sensing. Radiation in the form of alpha particles, beta particles and 

gamma rays have fundamentally different interactions with matter and therefore exhibit different mean-free paths  

(∼1 μm, 1 mm and 1 cm, respectively). These forms of primary radiation deposit their energy over the course of  

their trajectory by ionizing their surroundings and producing non-thermal secondary electrons. Only very recently 

has the ability of low-energy secondary electrons to induce chemical reactions and biological damage begun to be  

appreciated1, because they have energies below the typical ionization threshold of organic matter. For example,  

low-energy electrons (3–20 eV) have been shown to be effective at causing DNA cleavage2,4,7. This ability stems 

from their high cross-section for breaking chemical bonds, and as a consequence they have a very short mean-

free path of ∼1–10 nm in solution8,9. Furthermore, hot electrons that are not captured by surrounding molecules 

become thermalized as solvated electrons which are known to be chemically and biological active 9–12. To harness 

these unique properties, the design of radioactive materials that increase and localize the flux of short-range low-

energy electrons to target sites is crucial for their application in targeted cancer therapies that minimize damage to  

healthy cells. Thus far, it has not been possible to design atomically precise radioactive materials that maximize  

these effects due to self-destruction arising from nuclear recoil, Coulomb explosion and self-irradiation13–16.

We report a straightforward method for synthesizing monolayer films of radioactive 125I atoms on gold-coated 

mica substrates under ambient conditions, and characterize their composition and their electron emission. Despite  

being synthesized from radioactive  125I (> 99.9% purity) they are robust with respect to self-destruction, and 

provide well-defined, intense planar sources of secondary electrons.  125I  decays by electron capture (EC) of a 

core shell electron to produce a nuclear excited state of 125Te (Figure 1a), the majority of which eject another core 

1Deptartment of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA. 2Thomas Young Centre, London Centre for Nanotechnology 

and Department of Chemistry, University College London, London WC1E 6BT, UK. 3PerkinElmer, Inc., 331 Treble Cove Road, North Billerica, MA 01862.



shell electron during de-excitation. A cascade of electronic relaxations following the creation of each core hole 

leads to emission of multiple electrons. Most of these emitted electrons have > 10 eV kinetic energy and their 

distribution in  energy is  very sensitive  to  the  local  chemical  environment3,15,17.  This  rapid electron emission 

(within ∼1 ns) leaves the daughter 125Te atom in a highly charged state (up to Te25+), and in a condensed material 

or molecule the sudden charging makes the system susceptible to fragmentation (via Coulomb explosion) without  

sufficiently fast neutralization15. Therefore, a major challenge in realizing a nano-structured radiation source is  

the design of a system that is robust under the ultra-fast release of energy and particles that accompany each  

atomic decay event. In anticipation of this challenge we have chosen  125I/Au for this work, because  the well-

known, robust I/Au chemistry makes this system a good candidate for a stable 2-D emitter18,19.

Samples were prepared using an ambient drop-casting method adapted from the previous (non-radioactive) 
127I/Au work of Huang et al.20 (Figure 1b). Survey X-ray photoelectron spectra (XPS) taken after preparation and 

transportation indicate no major contamination of the  125I samples during deposition or exposure to ambient 

conditions (Figure S1). In order to track the nuclear transmutation of  125I to  125Te, XPS measurements of the 

sample were taken as a function of time. By measuring the I and Te 3d core levels with XPS we directly observe 

the nuclear transmutation of 125I to 125Te as a decrease in the I and an increase in the Te signals over time (Figure 

1c). The sample never left vacuum over the course of the XPS measurements and hence the newly formed 125Te 

atoms appear in the spectrum with a binding energy of 582 (3d3/2) and 572 (3d5/2) eV, as expected for the Te0 

oxidation state21. These XPS measurements clearly show that the films withstand ambient processing (based on 

initial XPS surveys after synthesis and transportation), and that the newly formed 125Te daughter is resistant to 

desorption.
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Figure  |  Overview of radioactive  125I monolayer 
film  preparation  and  characterization. 
(a) Schematic of electron capture decay of 125I and a 
resulting Auger electron. (b) Photograph of Au/mica 
substrate during the drop-casting deposition of I from 
solution. (c) XPS spectra of radioactive 125I film as a 
function of time reveals the nuclear transmutation of 
125I  into  125Te, and indicates that  the daughter  125Te 
atom remains bound to the surface. Elemental core 
levels are labelled and arrows highlight the change of 
I to Te over time: red is at 8 days, purple at 38 days 
and blue at 76 days. 



We imaged the film structure with scanning tunnelling microscopy (STM) to search for atomic-scale damage 

near the 125Te species observed in XPS. Theoretical studies have indicated that the decay of condensed phase 125I 

leads to an average total energy of 18.3 keV being deposited into its surroundings in the form of hot electrons3,22. 

When using the traditional  convention of only considering total  deposited energy,  it  would be reasonable to 

suspect  film damage via local atomic desorption in  125I films18.  However this is not what  we observe;  when 

imaging 100 × 100 nm2 areas or larger (Figure Figure a), no damage is visible, and the 125I films appear identical 

to those of stable 127I control films (Figure S2). High-resolution imaging of smaller areas (Figure Figure a, inset; 

and Figure 2b) yields atomic resolution of the  125I monolayer in the expected  (√3⨯√3)R30° structure.  In total, 

imaging of the radioactive monolayer structure at many scales shows that the  125I film is not damaged by self-

irradiation. We  observe the  appearance  of  atom-sized  depressions  randomly  distributed  throughout  the  125I 

monolayer which are not present in the  127I control films which we assign as  125Te atoms resulting from the 

nuclear transmutation of 125I. 
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Figure  | Atomic-scale characterization of radioactive 125I monolayer and nuclear transmutation. (a) STM 
images of 125I films show flat I-covered Au terraces separated by atomic steps (main image: V = +100 mV, I = 1 
nA and 50 nm scale bar) and atomic resolution of 125I atoms in (√3⨯√3)R30° overlayer (inset: V = -400 mV, I = 
100 pA and 1 nm scale bar). (b) High resolution STM image reveals a 125Te atom feature topographically 
lower than the neighbouring I atoms (V = 100 mV, I = 10 pA). (c) Repeating DFT structure (top; I in 
purple and Te in green) and DFT-based simulated STM image (bottom) indicate that these features are isolated 
Te atoms which appear topographically lower than their I neighbours due to the shorter, stronger Te–Au bond.  
(d) Schematic  representation  of  stochastic  nuclear  transmutation  of  individual  atoms  in  the  monolayer  
geometry (125I in purple, 125Te in grey).



The striking resilience of the radioactive film can be explained by the density functional theory calculations 

(DFT) we performed for various I, Te and mixed I/Te overlayers. We determined the most stable adsorption sites  

for both I and Te as the three-fold hollow sites by placing the adsorbates at a variety of high-symmetry adsorption  

sites (for an explanation of DFT methods and setup see Supplementary Information). The simulated STM images 

of  the  overlayer  structure  (illustrated  in  Figure  Figure  c)  indicate  that  the  Te  atoms  do  indeed  appear  as 

depressions with respect to the I atoms (See Figures S3 & S4 where it is shown that this is the case for all biases  

considered). This difference in apparent height is primarily due to the Te atoms being bound more strongly to the  

Au(111) surface and subsequently having a shorter bond length (268 pm for Te, 291 pm for I). Experimental 

images with STM tip states  that  provide  very high spatial  resolution reveal  a  central  protrusion  within  the  

depressions corresponding to the Te atom, which is consistent with our DFT-simulated STM images (Figure 2b, 

c).  Furthermore,  the  results  of  the  DFT calculations  explain the  experimentally  observed film stability.  The 

calculated I–Au and Te–Au binding energies, 2.1 eV and 3.1 eV respectively, are much larger than the nuclear 

recoil energy (< 0.1 eV), thus preventing rupture of the surface bonds following decay18. More importantly, there 

is also substantial hybridization of the I/Te valence orbitals with the Au surface which we postulate imparts 

resilience  against  Coulomb  explosion  by  allowing  fast  electron  transfer  from  the  Au  surface  that  rapidly 

neutralizes the atom undergoing decay15,23.

In order to probe the performance of the  125I/Au films as low-energy electron emitters we recorded electron 

emission spectra in the 0–600 eV kinetic energy range with a 5-channel concentric hemispherical electron energy 
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Figure  | Electron emission from radioactive 125I monolayer. (a) Representative electron emission spectrum 
shows that, in addition to the expected electron capture decay process Auger peaks at 480 eV (intensity ×200),  
a multitude of low-energy (0-20 eV) electrons are emitted from the  125I/Au film. (b) Schematic of electron 
backscattering  from  the  metal  film  (lower)  which  leads  to  six-fold  enhancement  of  low-energy  electron 
emission compared to atomic 125I (upper). Each box represents the average emission of 1 electron per decay 
with kinetic energy < 10 eV3.



analyser. The emission spectrum (Figure 3a) shows the electron energy distribution is concentrated in the desired 

region of 0–20 eV and a smaller peak at 480 eV that arises from Auger (MNN) transitions in the daughter 125Te 

atom during the core hole relaxation cascade21. Given the uncertainty of the transmission function of our analyser 

at low electron energy we quantified the number of emitted electrons by bringing a flat Au-coated plate (3.5 mm 

diameter) within 0.1 mm of the grounded sample surface in vacuum and recording the electrical current.  By  

applying a negative potential to the collector plate we could suppress, and hence quantify, the low-energy electron 

flux flowing from the radioactive sample to the collector. Application of -10 V to the collector plate suppressed 

the electron flow by 11.8 pA. The half-life of 125I, the age of our sample (8 days), and the density of 125I atoms in 

the monolayer are known, and we calculate that there are 13.4 electrons emitted per  125I decay with a kinetic 

energy < 10 eV (see Supplementary Information for details). The 2-D interface geometry of our radiation source 

dictates that half of the primary electrons emitted from decaying 125I atoms are directed into the metal substrate, 

and  those  with  higher  energies  should  be  expected  to  backscatter  lower  energy  secondary  electrons;  in  an  

analogous  manner  to  secondaries  generated  during  electron  spectroscopy  and  diffraction  experiments24.  An 

interesting effect occurs when the collector is biased at -10 V; the net current flow reverses compared to when the  

sample and collector are unbiased, and (at -10 V) electrons flow from the collector to the sample. This is because 

the high energy primaries from the radioactive sample generate secondary electrons in the collector plate that  

dominate the electrical current when the secondary electrons from the sample are suppressed. Although we expect  

some enhancement of the low-energy primary electron emission due to hybridization between the 125I atoms and 

the Au surface, this experiment demonstrates the significance of the secondary emission from Au metal induced 

by primary emission of the radioactive decay. Our 125I films emit a low-energy (0 – 10 eV) electron flux that is 

> 600% that of atomic 125I when deposited on Au(111) (Figure 3b) mainly via inelastic scattering, which will be a 

ubiquitous property for all metal substrates. Furthermore, the influence of the substrate material can be examined  

using this setup. We found a ~20% reduction in the secondary emission induced by the 125I monolayer in a ∼0.6 

mm thick disc  of  graphite  attached to  the  collector,  which illustrates  the  benefits  of  a metallic  substrate  in  

amplifying the yield of chemically-active low-energy electrons. 

In summary, we report a method for making air-stable, planar and atomically well-defined radiation sources 

that emit high fluxes of low-energy electrons. This system has enabled us to image nuclear transmutation with  

atomic-scale  resolution.  Looking forward,  the  simplicity  of  this  approach for  making 2-D radioactive films,  

coupled  with  the  abundance  of  established  experimental  procedures  for  nano-patterning  substrates  and 

functionalizing nanoparticles will open up many new possibilities. For example, electron transmission through 

thin films of water, proteins and DNA adsorbed on well-defined radioactive substrates will help quantify the local 

effect  of  secondary electrons.  This will  in turn provide an improved microscopic understanding of radiation  

chemistry,  biological  degradation  and material  damage25.  In  terms  of  application,  125I  is  commonly  used  in 

radiation therapy as well as in medical imaging and  the I-Au surface chemistry used in our model system is 

compatible with Au nanoparticles. Such nanoparticles, when functionalized, are commonly used in many aspects 

of biology and medicine to target specific sites within cells5,6,26–29.  Given that 80% of the secondary-generating 

electrons ejected from 125I have an inelastic mean free path less than 2 nm, 125I-coated nanoparticles are expected 

to also produce high fluxes of low-energy electrons. The prospects for 125I/Au nanoparticle stability in a biological 

environment are promising as it is well known that iodine-coated Au nanoparticles are very stable in solution due 
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to strong I-Au bonds, and our DFT calculations reveal that the Te-Au bond is even stronger  6,30–32.  The 600% 

amplification in low-energy electron emission of the radioactive  125I/Au system we report here highlights the 

potential for targeted radio-iodine coated Au nanoparticles that increase their efficacy per nuclear decay while  

minimizing bystander damage due to the short mean free path of the emitted low-energy electrons.
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