16 research outputs found

    Heating of the auroral ionosphere by traveling ionospheric disturbances initiated by atmospheric gravity waves

    Get PDF
    In the presence of perturbations of the thermospheric auroral region produced by traveling ionospheric disturbances during the propagation of atmospheric gravity waves, an analytical expression of the velocity of the thermospheric plasma is derived through magnetohydrodynamic formalism. The expressions of the Joule heating and the viscous heating are derived, and their rates of variation are presented. A threshold height for their transition has been determined from their ratio, which is in agreement with the experimental data. The analysis indicates that the time taken by the thermospheric plasma to reach a steady-state corresponds to the nature of the traveling ionospheric disturbances in the medium

    Earth's Atmospheric Electricity Parameter Response During Venus Transit

    No full text
    Venus transited across the Sun on 06 June 2012, introducing significant contribution to the tidal characteristics of the solar atmosphere. _ atmosphere was perturbed due to an anomalous Coronal Mass Ejection (CME) and γ-radiationγ-radiation influenced by the solar tide due to Venus transit, thereby the Earth-ionosphere waveguide characteristics were changed. In this anomalous situation we measured some atmospheric electricity parameters such as Schumann resonance (SR) amplitude, very low frequency (VLF) sferics, subionospheric transmitted signals and the point discharge current (PDC) along with the vertical electrical potential gradient (PG) at the ground surface on the day of transit. The results showed some remarkable variations during the transit as well as pre- and post-transit periods. The observed anomalies in the recorded data were interpreted in terms of the anomalous solar tidal effects initiated due to Venus transit

    Effects of a Solar Eclipse on the Propagation of VLF-LF Signals: Observations and Results

    No full text
    The results from the measurements of some of the fundamental parameters (amplitude of sferics and transmitted signal, conductivity of lower ionosphere) of the ionospheric responses to the 22 July 2009 solar eclipse (partial: 91.7%) are shown. This study summarizes our results from sferics signals at 81 kHz and subionospheric transmitted signals at 19.8 and 40 kHz recorded at Agartala, Tripura (latitude: 23¢XN, longitude: 91.4¢XE). We observed significant absorption in amplitude of these signals during the eclipse period compared to their ambient values for the same period during the adjacent 7 days. The signal strength along their propagation paths was controlled by the eclipse associated decrease in ionization in the D-region of the ionosphere. Waveguide mode theory calculations show that the elevation of the height of lower ionosphere boundary of the Earth-ionosphere waveguide to a value where the conductivity parameter was 106 unit. The absorption in 81 kHz sferics amplitude is high compared to the absorption in the amplitude of 40 kHz signal transmitted from Japan. The simultaneous changes in the amplitudes of sferics and in the amplitude of transmitted signals assert some sort of coupling between the upper atmosphere and the Earth¡¦s near-surface atmosphere prevailing clouds during solar eclipse

    Effects of the India–Pakistan border earthquake on the atmospherics at 6 kHz and 9 kHz recorded at Tripura

    No full text
    <!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:Compatibility> <w:BreakWrappedTables /> <w:SnapToGridInCell /> <w:WrapTextWithPunct /> <w:UseAsianBreakRules /> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> </w:WordDocument> </xml><![endif]--><!--[if !mso]><object classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui></object> <mce:style><! st1:*{behavior:url(#ieooui) } --> <!--[endif] --> <!-- /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman";} @page Section1 {size:612.0pt 792.0pt; margin:72.0pt 90.0pt 72.0pt 90.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> <!--[if gte mso 10]> <mce:style><! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman";} --> <!--[endif] -->The unusual variations observed in the records of the integrated field intensity of the atmospherics (IFIA) at 6 kHz and 9 kHz at Agartala, Tripura, in the north-eastern state of India (latitude, 23˚ N; longitude, 91.4˚ E) during the large earthquake on October 8, 2005 at Muzaffarabad (latitude, 34.53˚ N; longitude, 73.58˚ E) in Kashmir in Pakistan are here analyzed. Spiky variations in the IFIA at 6 kHz and 9 kHz were observed several days previous to the day of the earthquake (from midnight, September 28, 2005). The effects persisted for some days, decayed gradually, and eventually ceased on October 31, 2005. The spikes are distinctly superimposed on the ambient level, with mutual separation of 2–5 mins. The number of spikes per day and the total duration of their occurrence were particularly high on the day of the earthquake. The spike heights are higher at 6 kHz than at 9 kHz. The results are discussed here. The generation of electromagnetic radiation associated with the fracture of rocks, the subsequent penetration of this radiation into the Earth atmosphere, and finally its propagation through the Earth–ionosphere waveguide may be responsible for these observed spikes. The present observations show that the very low frequency anomaly dominates between 6 kHz and 9 kHz. The nature of the spikes presented here is a characteristic feature of the IFIA during the period of the earthquake. This has been established on the basis of time-series analyses over a period of one year.<br /><span style="font-size: 12pt;"></span&gt

    Heat transfer and pressure drop correlations of nanofluids: A state of art review

    No full text
    corecore