12 research outputs found

    The Geology of Ukhaa Tolgod (Djadokhta Formation, Upper Cretaceous, Nemegt Basin, Mongolia)

    Get PDF
    The lithostratigrahy and sedimentology of the fossiliferous Upper Cretaceous strata exposed in the Gobi Desert of Mongolia at Ukhaa Tolgod are described and mapped on aerial photos. Topographic features are also mapped by plane table and alidade. Five lithologic and sedimentologic facies are described: E-1, distinctly cross-stratified sandstone with fine structure, interpreted to represent eolian dune deposits; E-2, vaguely bedded sandstone with cross-stratified concretionary sheets, interpreted to represent eolian dune deposits modified by diagenetic formation of slope-parallel concretionary sheets of pedogenic calcite; S, structureless sandstone lacking concretions or cross-strata, interpreted to represent sandslide deposits generated by mass wasting along the lee slopes; C, conglomerate interpreted to represent basin-margin conglomerates washed into the dune field from adjacent topographic highs; and M, mudstone and siltstone interpreted to represent interdune deposition in ephemeral ponds and lakes. Facies E-2 and S have not been reported previously. Eleven stratigraphic sections at various localities within the Ukhaa Tolgod drainage basin are documented. The exposed composite section consists of about 75 m of pale orange sandstones, greenish-brown conglomerates, and brown siltstones that are products of an arid environment. Four schematic cross sections are documented to illustrate the lateral relationships among the five facies. In the Ukhaa Tolgod area, the beds dip about 2.5u to the south, away from the nearby Gilbent Range. This structural attitude is interpreted to be related to the uplift of the Gilbent block along normal faults exposed at the base of the range. The dune-derived sandslides of Facies S contain a rich skeletal fauna of Late Cretaceous dinosaurs, mammals, and lizards. Essentially, all the skeletal remains collected at Ukhaa Tolgod come from Facies S. Facies E-1 does contain numerous, concave-up depressions in the cross-strata interpreted as vertebrate tracks. Facies E-2 contains abundant cylindrical structures interpreted as burrows. The strata at Ukhaa Tolgod are referred to the Djadokhta Formation. As seen in the Bayn Dzak Member at Bayn Dzak, facies E-1, E-2, S, and M dominate the lower part of the section at Ukhaa Tolgod, with prominent beds of Facies C exposed near the top. Accordingly, the exposures at Ukhaa Tolgod are referred to the Bayn Dzak Member of the Djadokhta Formation. Classic exposures of the Barun Goyot Formation at Khulsan differ in having units of flat-bedded sandstone intercalated with beds of Facies S near the top of the section. To date, over 1,000 vertebrate skulls and skeletons have been collected from Facies S. Most are preserved as float contained in small calcareous nodules; however, some were found in situ. Many specimens represent either fairly complete skulls or skulls with articulated or associated postcranial skeletons. Based on faunal similarities between Bayn Dzak and Ukhaa Tolgod, the fauna at Ukhaa Tolgod is interpreted to reflect a Campanian age. The rich assemblage of fossils makes Ukhaa Tolgod one of the richest Late Cretaceous vertebrate fossil localities in the world, and the fossils provide unique insights into evolutionary developments of mammals, lizards, and dinosaurs, including birds, less than 10 my before the terminal Cretaceous extinction event

    The Age of the 20 Meter Solo River Terrace, Java, Indonesia and the Survival of Homo erectus in Asia

    Get PDF
    Homo erectus was the first human lineage to disperse widely throughout the Old World, the only hominin in Asia through much of the Pleistocene, and was likely ancestral to H. sapiens. The demise of this taxon remains obscure because of uncertainties regarding the geological age of its youngest populations. In 1996, some of us co-published electron spin resonance (ESR) and uranium series (U-series) results indicating an age as young as 35–50 ka for the late H. erectus sites of Ngandong and Sambungmacan and the faunal site of Jigar (Indonesia). If correct, these ages favor an African origin for recent humans who would overlap with H. erectus in time and space. Here, we report 40Ar/39Ar incremental heating analyses and new ESR/U-series age estimates from the “20 m terrace" at Ngandong and Jigar. Both data sets are internally consistent and provide no evidence for reworking, yet they are inconsistent with one another. The 40Ar/39Ar analyses give an average age of 546±12 ka (sd±5 se) for both sites, the first reliable radiometric indications of a middle Pleistocene component for the terrace. Given the technical accuracy and consistency of the analyses, the argon ages represent either the actual age or the maximum age for the terrace and are significantly older than previous estimates. Most of the ESR/U-series results are older as well, but the oldest that meets all modeling criteria is 143 ka+20/−17. Most samples indicated leaching of uranium and likely represent either the actual or the minimum age of the terrace. Given known sources of error, the U-series results could be consistent with a middle Pleistocene age. However, the ESR and 40Ar/39Ar ages preclude one another. Regardless, the age of the sites and hominins is at least bracketed between these estimates and is older than currently accepted

    Paleocene-Eocene Thermal Maximum and the Opening of the Northeast Atlantic

    No full text

    New Stratigraphic Subdivision, Depositional Environment, and Age Estimate for the Upper Cretaceous Djadokhta Formation, Southern Ulan Nur Basin, Mongolia

    Get PDF
    Studies of key and newly discovered sections of the Upper Cretaceous Djadokhta Formation along the southern margin of the Ulan Nur Basin allow a new subdivision based on lithology. The formation and its members were mapped at both Bayn Dzak, an area that includes the Flaming Cliffs, and Tugrugyin Shireh, an area about 50 km to the northwest of Bayn Dzak. Stratigraphic sections at both localities were remeasured. The considerably enlarged formation comprises a lower Bayn Dzak Member, dominated by moderate reddish orange sands with subordinate mudstone units, and an upper Tugrugyin Member, composed of pale orange to light gray sands. Investigations of key sections at Tsonzh and Alag Teer demonstrate the presence of transitional mudstone lenses between these members within the Djadokhta Formation. Two distinct, sandy, sedimentologic facies are recognized in both members. Crossbedded intervals, occasionally exhibiting wind-ripple cross lamination, document the presenceof a Cretaceous dunefield in the Ulan Nur Basin. Structureless intervals are interpreted to represent wet sandy fluvial deposits and debris flows that moved down the dune faces. In the Bayn Dzak Member, lenses of brownish mudstone are interpreted to represent interdune deposition in shallow ponds by fluvial action. Fluvial action is also represented in the Bayn Dzak Member by beds of caliche, which contain conglomerate at the base but fine upward into limestone. The vertebrate fauna from the Djadokhta Formation is summarized. Although the Bayn Dzak fauna lived somewhat earlier than that from Tugrugyin Shireh based on the superposition of the members, it is not clear how much earlier. The fauna from the Djadokhta Formation has previously been assigned ages from Cenomanian to earliest Maastrichtian. New magnetostratigraphic data document a sequence of normal and reversed magnetozones through the Bayn Dzak Member up into the basal Tugrugyin Member. The presence of reversed magnetozones establishes that the sediments containing the faunas were probably deposited after C34n. The quick stratigraphic succession of normal and reversed magnetozones suggests, but does not clearly establish, that the sediments may have been deposited during the rapid sequence of polarity changes in the late part of the Campanian between about 75 to 71 Ma

    Progreso y retos de la geocronología 40Ar/39Ar en Costa Ricay Nicaragua

    No full text
    To better estimate the extrusive flux of the Central American Arc, from 2002-2008, we obtained sixty one high precision 40Ar/39Ar ages on geographically well-situated lavas and tephra from Costa Rica and Nicaragua. Here, we describe a number of observations encountered during this study using four examples that well document the preci- sion, accuracy and general reliability of the 40Ar/39Ar ages. First, low K2O values, particularly in samples from Nicara- gua, is a major limitation in or attempts to obtain reliable dates on samples under 1 My. Second, extensive weathering of samples due to the tropical climate of Central America has resulted in various levels of argon loss even when the hand sample appeared unaltered. Third, our field and geochronological data lead us to conclude that eruptive rates have not been constant over the past 15 to 20 My, but rather appears punctuated by gaps of up to several million years. We attempted to address the temporal gaps in several ways. First, geochemical analyses were used to identify samples that may have erupted during time periods without known volcanism. For example, U/Th values in the active Central American arc are significantly higher than those obtained from the Miocene Coyol Group except for four samples with intermediate values that were dated to determine if their ages were intermediate as well. However, all of these samples were found to be from a period with known volcanism. Second, we sought to locate the oldest sections of the active arc and the youngest sections of the Coyol Group in order to better constrain the timing and duration of the apparent gap in volcanic productivity. This approach also failed to locate samples from periods without known volcanism. When these methods proved largely unsuccessful, our focus shifted to dating regions of minor volcanism between the active and Coyol volcanic fronts as well as between Cosigüina and San Cristóbal, the longest stretch of the Central American Volcanic Front without active volcanism. This effort yielded ages on samples ranging from 1.1 to 3.6 Ma and, thus, substantially reduced the apparent volcanic gap in Nicaragua.Con el principal objetivo de realizar mejores cálculos de la producción volcánica, en el Arco Volcánico de América Central, realizamos 61 dataciones 40Ar/39Ar en tefras y lavas en localidades de frente volcánico de Costa Rica y Nicaragua por medio de varias campañas de campo y análisis de laboratorio (preparación de muestras, envió al reactor nuclear, espectroscopía de masas de las muestras radiactivas, al laboratorio de gases nobles del Departamento de Ciencias de la Tierra y Planetarias de la Universidad Rutgers) del 2002-2008. En este artículo presentamos diferentes observaciones que resultaron de este estudio donde se describe la precisión, exactitud y la confiabilidad de las edades 40 Ar/39Ar. El primer resultado muestra las limitaciones de esta técnica en muestras baja en K2O con edades < 1 Ma, espe- cialmente en Nicaragua. El segundo resultado muestra los efectos de la pérdida de Ar por los procesos de meteorización típicos del trópico, inclusive afectando las muestras sanas a nivel críptico. El tercer resultado sugiere que las razones eruptivas del frente volcánico no han sido constantes durante los últimos 15-20 Ma, sino más bien representan ciclos eruptivos. Con el propósito de evaluar los hitos entre diferentes ciclos eruptivos, evaluamos los datos geoquímicos a lo largo del frente volcánico, en especial las relaciones U/Th, cuyos valores son inferiores (Grupo Coyol) en Nicaragua, comparados con el frente volcánico activo. Sin embargo, las muestras seleccionadas con base en geoquímica, resultaron ser de edades conocidas y no produjeron datos que llenan los hiatos entre ciclos de actividad volcánica. La siguiente es- trategia que manejamos fue extender el muestreo en el Grupo Coyol, inmediatamente detrás del frente volcánico activo, sin embargo, esta estrategia no fue exitosa para encontrar muestras que llenaran los hiatos de actividad. No obstante, obtuvimos edades de 1.1-3,6 Ma entre los volcanes Cosiguina and San Cristóbal, los cuales limitan el hiato de actividad y mejoran nuestra percepción de los ciclos de actividad volcánica en América Central

    Magmatic activity across the East African North Tanzanian Divergence Zone

    No full text
    <p>Volcanism across the North Tanzanian Divergence Zone (NTD), part of the East African Rift System, occurred episodically from the late Miocene to Recent. Here, we present a summary of previously published K–Ar and <sup>40</sup>Ar/<sup>39</sup>Ar ages, new <sup>40</sup>Ar/<sup>39</sup>Ar ages, and geochemical and Sr–Nd–Pb isotopic analyses on samples collected from several volcanoes distributed across the NTD: Burko, Monduli, Tarosero, Ketumbeine, Gelai, Kerimasi and Meru. The locus of volcanism over this period progressed from the southwestern portion of the NTD to the north and east, with a main pulse occurring at about 2.3 Ma, possibly marking the inception of a main rifting event. We model the source of the NTD volcanic rocks as a metasomatized subcontinental lithospheric mantle that includes minor and variable amounts of garnet and amphibole. REE data indicate variations in residual garnet content, consistent with varying depth of melt separation. Radiogenic isotopic data show systematic variations requiring the involvement of up to three components. Two alternative but not exclusive tectonic scenarios are proposed: one requiring the involvement of contributions from recent plume-related fluids, and one explaining the observed geochemical variations by melting of a lithosphere layered by multiple metasomatic events. </p

    Franco-American renewed research at the Late Villafranchian locality of Senèze (Haute-Loire, France),

    No full text
    International audienceThe fossil site of Senèze, located in the Auvergne volcanic province of the French Massif Central, is well-Known for its mammalian fauna and its role as the reference locality for the Late Villafranchian time interval, an important phase in the evolution of the fauna of Europe. This site is a filled-in volcanic explosion-crater lake (maar) where fossils are found in volcano-clastic sediments interfingering with lacustrine deposits at the lake margin. The Senèze mammals are generally considered to date between 2.2-1.5 Ma, but some authors have argued that this assemblage is note unitary, rather composed of two associations of different age. Moreover, little has been published about the geological setting or the processes of site formation. Our Franco-American research project, co-directed by the three first authors since 2000, is re-examining Senèze for the first time in 60 years. The team effort has three main goals : 1) to clarify the local geology (stratigraphy, mineralogy) of this complex site and determine the taphonomic processes involved; 2) to utilize a combination of methods (ESR and argon dating ; tephrochronological and paleomagnetic correlation) to definitively establish the age of the site and its fauna; and 3) to collect additional mammalian fossils (especially of rare animals such as carnivores, primates and rodents) and samples of the non-mammalian biota, including vertebrates (e.g., birds and fisches), terrestrial and lacustrine invertebrates, pollen and diatoms from known points within the revised and dated stratigraphy. Several partial skeletons which appear devoid of carnivore disturbance have been recovered, and a new taphonomic hypothesis is proposed to explain this pattern. Some preliminary argon dates are presented for levels below the fossil mammals, while preliminary ESR and paleomagnetic results agree with an age broadly near 2 Ma. Pollen collected in situ and from coprolites allows a first step toward paleoenvironmental reconstructio

    Chronostratigraphic terminology at the Paleocene/Eocene boundary.

    Get PDF
    Integrated research over the past decade has led to the recognition of a short (150-200 k.y.) interval of Paleogene time within Chron C24r at ~55.5 Ma, formerly termed the late Paleocene Thermal Maximum (LPTM) but more recently the Paleocene-Eocene Thermal Maximum (PETM), that was crucial in the climatic, paleoceanographic, and biotic evolution of our planet. Stable isotope analysis of marine carbonates indicates that there were transient changes in surface and deep-water temperatures. These climatic changes coincided with a negative 3%-4% carbon isotope excursion (CIE), which is recorded in both marine and terrestrial deposits. It was soon realized that the CIE not only constitutes a powerful tool for long distance ("global") isochronous correlation, but even more importantly that it is coeval with notable biotic events in both marine and continental fossil records that have long been taken as criteria for the beginning of the Eocene in North America and more recently in deep sea cores. On the other hand, the conventional Paleocene/Eocene boundary level at the Thanetian/Ypresian boundary in Belgium and the London Basin has been found to be ~1 m.y. younger than the CIE, based on the association of the First Appearance Datum (FAD) of the (calcareous nannoplankton) Tribrachiatus digitalis (at ~54.4 Ma) with the base of the Ypresian in the London Basin. Although the Ypresian definition would take priority under normal circumstances, a consensus has been reached to redefine the Eocene in recognition of the worldwide significance and correlatibility of stratigraphic features associated with the PETM. Redefinition of the Eocene, however desirable, nevertheless cannot proceed in a stratigraphic vacuum, and this paper is concerned with resolving the consequences of this action. To be made coincident with the CIE at ~55.5 Ma, the Ypresian/Thanetian boundary would have to be lowered by ~1 m.y., resulting in the inflation of the span of the Ypresian by 20% and a reduction of the span of the Thanetian by 30%. At the same time, the terminology of the strata in the leapfrogged interval would be thrown into total conflict with the literature, with the substitution of one widely used stage name for the other in the conflicted interval. On the other hand, to relocate the Paleocene/Eocene boundary without moving the stage boundaries would result in the upper third of the Thanetian falling within the Eocene, demolishing a century-old consensus. We propose that the destabilizing effect of the new boundary in the classic chronostratigraphy of western Europe can best be minimized with the introduction of a pre-Ypresian Stage, to encompass the orphaned upper Thanetian interval as the basal unit of the Eocene under a separate name. To this end, we suggest the reintroduction of the Sparnacian Stage, now that its original concept has been shown to correlate essentially with the interval between the CIE and the FAD of T. digitalis
    corecore