139 research outputs found

    Strengthening social work education in mental health: change through inter-professional collaboration

    Get PDF
    The impacts of mental health issues are widely documented in the literature, and Social Work as a profession is challenged to respond effectively to these issues. Strengthening social work education in mental health is accordingly gaining in importance so as to enable social work students to respond effectively to these challenges through appropriate knowledge, skills, and the ability to apply these in practice. This paper presents one approach towards strengthening social work education as utilised in the 'Social Worker as a Member of a Multidisciplinary Team' project at James Cook University. It is based on the premise that inter-professional education and collaborative process, the research team identified the areas of Competence, Compassion, and Confidence as the areas that need to be strengthened in the curriculum to meet the current needs and standards of professional practice of social workers in mental health; and also identified some methods towards embedding these in the social work curriculum. The paper closes with highlighting the need for such interprofessional collaborations and the synergies that they bring to curriculum development as well as presenting some of the areas of further research that have emerged through the process

    Design and Make: Creative Collaborations

    Full text link
    This presentation reports on an apprenticeship-style approach to a workshop-based project that provides a safe educational environment for young ex-gang members to explore their personal potential and creative ideas within a set framework. This collaborative project commits to working ā€˜Beyond Fashionā€™ to develop a meaningful relationship with young people affected by knife crime and facilitate an opportunity to build upon their own sense of personal identity, respond to change and continue their journey of creating a positive future for themselves and their wider community. Fashion permeates our everyday lives and has a subliminal connection to the world that we live in. We cannot underestimate the influence of fashion within society or the messages that it sends out as it becomes more intertwined with music, youth culture, politics and our everyday lives. It is precisely this connection and its diversity that has prompted this ā€˜participatoryā€™ workshop activity and to move fashion beyond its known boundaries of association. We can use ā€œfashionā€ to connect with those who are disconnected from society and use its potential to become a transformative vehicle for those whose lives have been affected by crime, unemployment, lack of opportunity and deep-rooted social issues that have led to a cycle of offending. Creative collaborations such as this also serve to create a culture of social and environmental awareness in order to develop and integrate sustainable and ethical practice throughout all aspects of our life and work

    Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    No full text
    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, and the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement

    Baseline Mutations and ctDNA Dynamics as Prognostic and Predictive Factors in ER-Positive/HER2-Negative Metastatic Breast Cancer Patients

    Get PDF
    Prognostic and predictive biomarkers to cyclin-dependent kinases 4 and 6 inhibitors are lacking. Circulating tumor DNA (ctDNA) can be used to profile these patients and dynamic changes in ctDNA could be an early predictor of treatment efficacy. Here, we conducted plasma ctDNA profiling in patients from the PEARL trial comparing palbociclib+fulvestrant versus capecitabine to investigate associations between baseline genomic landscape and on-treatment ctDNA dynamics with treatment efficacy.Correlative blood samples were collected at baseline [cycle 1-day 1 (C1D1)] and prior to treatment [cycle 1-day 15 (C1D15)]. Plasma ctDNA was sequenced with a custom error-corrected capture panel, with both univariate and multivariate Cox models used for treatment efficacy associations. A prespecified methodology measuring ctDNA changes in clonal mutations between C1D1 and C1D15 was used for the on-treatment ctDNA dynamic model.201 patients were profiled at baseline, with ctDNA detection associated with worse progression-free survival (PFS)/overall survival (OS). Detectable TP53 mutation showed worse PFS and OS in both treatment arms, even after restricting population to baseline ctDNA detection. ESR1 mutations were associated with worse OS overall, which was lost when restricting population to baseline ctDNA detection. PIK3CA mutations confer worse OS only to patients on the palbociclib+fulvestrant treatment arm. ctDNA dynamics analysis (n = 120) showed higher ctDNA suppression in the capecitabine arm. Patients without ctDNA suppression showed worse PFS in both treatment arms.We show impaired survival irrespective of endocrine or chemotherapy-based treatments for patients with hormone receptor-positive/HER2-negative metastatic breast cancer harboring plasma TP53 mutations. Early ctDNA suppression may provide treatment efficacy predictions. Further validation to fully demonstrate clinical utility of ctDNA dynamics is warranted

    First radial velocity results from the MINiature Exoplanet Radial Velocity Array (MINERVA)

    Full text link
    The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVA's unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVA's robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrograph's intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional "sum-of-Gaussians" instrumental profile: 1.8 m sāˆ’1^{-1} over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.Comment: 22 pages, 9 figures, submitted to PASP, Peer-Reviewed and Accepte

    Genomic profile of advanced breast cancer in circulating tumour DNA.

    Get PDF
    The genomics of advanced breast cancer (ABC) has been described through tumour tissue biopsy sequencing, although these approaches are limited by geographical and temporal heterogeneity. Here we use plasma circulating tumour DNA sequencing to interrogate the genomic profile of ABC in 800 patients in the plasmaMATCH trial. We demonstrate diverse subclonal resistance mutations, including enrichment of HER2 mutations in HER2 positive disease, co-occurring ESR1 and MAP kinase pathway mutations in HRā€‰+ā€‰HER2- disease that associate with poor overall survival (pā€‰=ā€‰0.0092), and multiple PIK3CA mutations in HRā€‰+ā€‰disease that associate with short progression free survival on fulvestrant (pā€‰=ā€‰0.0036). The fraction of cancer with a mutation, the clonal dominance of a mutation, varied between genes, and within hotspot mutations of ESR1 and PIK3CA. In ER-positive breast cancer subclonal mutations were enriched inĀ an APOBEC mutational signature, with second hit PIK3CA mutations acquired subclonally and at sites characteristic of APOBEC mutagenesis. This study utilises circulating tumour DNA analysis in a large clinical trial to demonstrate the subclonal diversification of pre-treated advanced breast cancer, identifying distinct mutational processes in advanced ER-positive breast cancer, and novel therapeutic opportunities

    How the biotinā€“streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer

    Get PDF
    The interaction between SA (streptavidin) and biotin is one of the strongest non-covalent interactions in Nature. SA is a widely used tool and a paradigm for proteinā€“ligand interactions. We previously developed a SA mutant, termed Tr (traptavidin), possessing a 10-fold lower off-rate for biotin, with increased mechanical and thermal stability. In the present study, we determined the crystal structures of apo-Tr and biotinā€“Tr at 1.5Ā Ć… resolution. In apo-SA the loop (L3/4), near biotin's valeryl tail, is typically disordered and open, but closes upon biotin binding. In contrast, L3/4 was shut in both apo-Tr and biotinā€“Tr. The reduced flexibility of L3/4 and decreased conformational change on biotin binding provide an explanation for Tr's reduced biotin off- and on-rates. L3/4 includes Ser45, which forms a hydrogen bond to biotin consistently in Tr, but erratically in SA. Reduced breakage of the biotinā€“Ser45 hydrogen bond in Tr is likely to inhibit the initiating event in biotin's dissociation pathway. We generated a Tr with a single biotin-binding site rather than four, which showed a simi-larly low off-rate, demonstrating that Tr's low off-rate was governed by intrasubunit effects. Understanding the structural features of this tenacious interaction may assist the design of even stronger affinity tags and inhibitors

    In vitro functional effects of XPC gene rare variants from bladder cancer patients

    Get PDF
    The XPC gene is involved in repair of bulky DNA adducts formed by carcinogenic metabolites and oxidative DNA damage, both known bladder cancer risk factors. Single nucleotide polymorphisms (SNPs) in XPC have been associated with increased bladder cancer risk. Recently, rarer genetic variants have been identified but it is difficult to ascertain which are of functional importance. During a mutation screen of XPC in DNA from 33 bladder tumour samples and matched blood samples, we identified five novel variants in the patientsā€™ germ line DNA. In a caseā€“control study of 771 bladder cancer cases and 800 controls, c.905T>C (Phe302Ser), c.1177C>T (Arg393Trp), c.*156G>A [3ā€² untranslated region (UTR)] and c.2251-37C>A (in an intronic C>G SNP site) were found to be rare variants, with a combined odds ratio of 3.1 (95% confidence interval 1.0ā€“9.8, P = 0.048) for carriage of one variant. The fifth variant was a 2% minor allele frequency SNP not associated with bladder cancer. The two non-synonymous coding variants were predicted to have functional effects using analytical algorithms; a reduced recruitment of GFP-tagged XPC plasmids containing either c.905T>C or c.1177C>T to sites of 408 nm wavelength laser-induced oxidative DNA damage was found in vitro. c.*156G>A appeared to be associated with reduced messenger RNA stability in an in vitro plasmid-based assay. Although the laser microbeam assay is relevant to a range of DNA repair genes, our 3ā€² UTR assay based on Green fluorescent protein(GFP) has widespread applicability and could be used to assess any gene. These assays may be useful in determining which rare variants are functional, prior to large genotyping efforts
    • ā€¦
    corecore