218 research outputs found
Host-induced aneuploidy and phenotypic diversification in the Sudden Oak Death pathogen Phytophthora ramorum
BackgroundAneuploidy can result in significant phenotypic changes, which can sometimes be selectively advantageous. For example, aneuploidy confers resistance to antifungal drugs in human pathogenic fungi. Aneuploidy has also been observed in invasive fungal and oomycete plant pathogens in the field. Environments conducive to the generation of aneuploids, the underlying genetic mechanisms, and the contribution of aneuploidy to invasiveness are underexplored. We studied phenotypic diversification and associated genome changes in Phytophthora ramorum, a highly destructive oomycete pathogen with a wide host-range that causes Sudden Oak Death in western North America and Sudden Larch Death in the UK. Introduced populations of the pathogen are exclusively clonal. In California, oak (Quercus spp.) isolates obtained from trunk cankers frequently exhibit host-dependent, atypical phenotypes called non-wild type (nwt), apparently without any host-associated population differentiation. Based on a large survey of genotypes from different hosts, we previously hypothesized that the environment in oak cankers may be responsible for the observed phenotypic diversification in P. ramorum.ResultsWe show that both normal wild type (wt) and nwt phenotypes were obtained when wt P. ramorum isolates from the foliar host California bay (Umbellularia californica) were re-isolated from cankers of artificially-inoculated canyon live oak (Q. chrysolepis). We also found comparable nwt phenotypes in P. ramorum isolates from a bark canker of Lawson cypress (Chamaecyparis lawsoniana) in the UK; previously nwt was not known to occur in this pathogen population. High-throughput sequencing-based analyses identified major genomic alterations including partial aneuploidy and copy-neutral loss of heterozygosity predominantly in nwt isolates. Chromosomal breakpoints were located at or near transposons.ConclusionThis work demonstrates that major genome alterations of a pathogen can be induced by its host species. This is an undocumented type of plant-microbe interaction, and its contribution to pathogen evolution is yet to be investigated, but one of the potential collateral effects of nwt phenotypes may be host survival
Blocking TLR7- and TLR9-mediated IFN-α Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection
Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology. © 2013 Kader et al
Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model
Plasmacytoid dendritic cells (pDCs) have long been implicated in the pathogenesis of lupus. However, this conclusion has been largely based on a correlative link between the copious production of IFN-α/β by pDCs and the IFN-α/β “signature” often seen in human lupus patients. The specific contribution of pDCs to disease in vivo has not been investigated in detail. For this reason, we generated a strain of BXSB lupus-prone mice in which pDCs can be selectively depleted in vivo. Early, transient ablation of pDCs before disease initiation resulted in reduced splenomegaly and lymphadenopathy, impaired expansion and activation of T and B cells, reduced antibodies against nuclear autoantigens and improved kidney pathology. Amelioration of pathology coincided with decreased transcription of IFN-α/β–induced genes in tissues. PDC depletion had an immediate impact on the activation of immune cells, and importantly, the beneficial effects on pathology were sustained even though pDCs later recovered, indicating an early pDC contribution to disease. Together, our findings demonstrate a critical function for pDCs during the IFN-α/β–dependent initiation of autoimmune lupus and point to pDCs as an attractive therapeutic target for the treatment of SLE
Dendritic Cell Subtypes from Lymph Nodes and Blood Show Contrasted Gene Expression Programs upon Bluetongue Virus Infection
Chantier qualité GAHuman and animal hemorrhagic viruses initially target dendritic cells (DCs). It has been proposed, but not documented, that both plasmacytoid DCs (pDCs) and conventional DCs (cDCs) may participate in the cytokine storm encountered in these infections. In order to evaluate the contribution of DCs in hemorrhagic virus pathogenesis, we performed a genome-wide expression analysis during infection by Bluetongue virus (BTV), a double-stranded RNA virus that induces hemorrhagic fever in sheep and initially infects cDCs. Both pDCs and cDCs accumulated in regional lymph nodes and spleen during BTV infection. The gene response profiles were performed at the onset of the disease and markedly differed with the DC subtypes and their lymphoid organ location. An integrative knowledge-based analysis revealed that blood pDCs displayed a gene signature related to activation of systemic inflammation and permeability of vasculature. In contrast, the gene profile of pDCs and cDCs in lymph nodes was oriented to inhibition of inflammation, whereas spleen cDCs did not show a clear functional orientation. These analyses indicate that tissue location and DC subtype affect the functional gene expression program induced by BTV and suggest the involvement of blood pDCs in the inflammation and plasma leakage/hemorrhage during BTV infection in the real natural host of the virus. These findings open the avenue to target DCs for therapeutic interventions in viral hemorrhagic diseases
Selective blockade of interferon-α and -β reveals their non-redundant functions in a mouse model of West Nile virus infection
Although type I interferons (IFNs) were first described almost 60 years ago, the ability to monitor and modulate the functional activities of the individual IFN subtypes that comprise this family has been hindered by a lack of reagents. The major type I IFNs, IFN-β and the multiple subtypes of IFN-α, are expressed widely and induce their effects on cells by interacting with a shared heterodimeric receptor (IFNAR). In the mouse, the physiologic actions of IFN-α and IFN-β have been defined using polyclonal anti-type I IFN sera, by targeting IFNAR using monoclonal antibodies or knockout mice, or using Ifnb-/- mice. However, the corresponding analysis of IFN-α has been difficult because of its polygenic nature. Herein, we describe two monoclonal antibodies (mAbs) that differentially neutralize murine IFN-β or multiple subtypes of murine IFN-α. Using these mAbs, we distinguish specific contributions of IFN-β versus IFN-α in restricting viral pathogenesis and identify IFN-α as the key mediator of the antiviral response in mice infected with West Nile virus. This study thus suggests the utility of these new reagents in dissecting the antiviral and immunomodulatory roles of IFN-β versus IFN-α in murine models of infection, immunity, and autoimmunity
Influence of End Customer Exposure on Product Design within an Epistemic Game Environment
Engineering product design requires both technical aptitude and an understanding of the non-technical requirements in the marketplace, economic or otherwise. Engineering education has long focused on the technical side of product design, but there is increasing demand for market-aware engineers in industry. Market-awareness and customer-focus are also associated with entrepreneurship, which has been given increased focus in engineering education. A common tool for gauging customer interest in industry is the focus group. Herein we examine the effect of customer voice as presented in a focus group for influencing engineering product design generated by students as part of the virtual internship and epistemic game Nephrotex. We find that customer exposure is related to decreased product cost without a change in product quality. Therefore, we suggest that the injection of customer voice into the engineering curriculum is a valid method by which to improve engineering design pedagogy
A Grounded Qualitative Analysis of the Effect of a Focus Group on Design Process in a Virtual Internship
A key component associated with the development of an entrepreneurial mindset is the ability to understand customerneeds and consider this when developing a product. This study sought to understand whether the inclusion of a customerfocus group as part of a virtual internship created any differences in the design processes of sophomore engineeringstudents (114 students). The Nephrotex virtual internship requires that students design a dialysis membrane by optimizinga selection of four components: membrane polymer, polymerization process, processing surfactant, and carbon nanotubepercentage. We found that sophomores who engaged in a focus group during the virtual internship Nephrotex showed(statistically) equal focus on cost versus technical measures of design performance during the focus group. Despite this,design cost was lower in the section that participated in a focus group, with no decrease in product quality. This indicatesthat customer voice may be an important factor in decreasing product cost. We also found that sophomore studentsprioritized their interviewing of customers within the focus group towards end users, such as the patient and nephrologist.Qualitative analysis of sophomore responses demonstrated that they found utility in the focus group (30% of participants)but did not necessarily believe that the customers had useful knowledge of the relevant design attributes (17% ofparticipants). Such realizations may have contributed to the equivalent quality and decreased costs associated with thedesigns of sophomores who participated in a focus group
A Grounded Qualitative Analysis of the Effect of a Focus Group on Design Process in a Virtual Internship
A key component associated with the development of an entrepreneurial mindset is the ability to understand customerneeds and consider this when developing a product. This study sought to understand whether the inclusion of a customerfocus group as part of a virtual internship created any differences in the design processes of sophomore engineeringstudents (114 students). The Nephrotex virtual internship requires that students design a dialysis membrane by optimizinga selection of four components: membrane polymer, polymerization process, processing surfactant, and carbon nanotubepercentage. We found that sophomores who engaged in a focus group during the virtual internship Nephrotex showed(statistically) equal focus on cost versus technical measures of design performance during the focus group. Despite this,design cost was lower in the section that participated in a focus group, with no decrease in product quality. This indicatesthat customer voice may be an important factor in decreasing product cost. We also found that sophomore studentsprioritized their interviewing of customers within the focus group towards end users, such as the patient and nephrologist.Qualitative analysis of sophomore responses demonstrated that they found utility in the focus group (30% of participants)but did not necessarily believe that the customers had useful knowledge of the relevant design attributes (17% ofparticipants). Such realizations may have contributed to the equivalent quality and decreased costs associated with thedesigns of sophomores who participated in a focus group
Antiretroviral therapy partially improves the abnormalities of dendritic cells and lymphoid and myeloid regulatory populations in recently infected HIV patients
This study aimed to evaluate the effects of antiretroviral therapy on plasmacytoid (pDC) and myeloid
(mDC) dendritic cells as well as regulatory T (Treg) and myeloid-derived suppressor (MDSC) cells in HIVinfected
patients. Forty-five HIV-infected patients (20 of them with detectable HIV load −10 recently
infected and 10 chronically infected patients-, at baseline and after antiretroviral therapy, and 25 with
undetectable viral loads) and 20 healthy controls were studied. The influence of HIV load, bacterial
translocation (measured by 16S rDNA and lipopolysaccharide-binding protein) and immune activation
markers (interleukin –IL- 6, soluble CD14, activated T cells) was analyzed. The absolute numbers and
percentages of pDC and mDC were significantly increased in patients. Patients with detectable viral
load exhibited increased intracellular expression of IL-12 by mDCs and interferon -IFN- α by pDCs.
Activated population markers were elevated, and the proportion of Tregs was significantly higher in
HIV-infected patients. The MDSC percentage was similar in patients and controls, but the intracellular
expression of IL-10 was significantly higher in patients. The achievement of undetectable HIV load
after therapy did not modify bacterial translocation parameters, but induce an increase in pDCs, mDCs
and MDSCs only in recently infected patients. Our data support the importance of early antiretroviral
therapy to preserve dendritic and regulatory cell function in HIV-infected individuals
UNC93B1 Mediates Innate Inflammation and Antiviral Defense in the Liver during Acute Murine Cytomegalovirus Infection
Antiviral defense in the liver during acute infection with the hepatotropic virus murine cytomegalovirus (MCMV) involves complex cytokine and cellular interactions. However, the mechanism of viral sensing in the liver that promotes these cytokine and cellular responses has remained unclear. Studies here were undertaken to investigate the role of nucleic acid-sensing Toll-like receptors (TLRs) in initiating antiviral immunity in the liver during infection with MCMV. We examined the host response of UNC93B1 mutant mice, which do not signal properly through TLR3, TLR7 and TLR9, to acute MCMV infection to determine whether liver antiviral defense depends on signaling through these molecules. Infection of UNC93B1 mutant mice revealed reduced production of systemic and liver proinflammatory cytokines including IFN-α, IFN-γ, IL-12 and TNF-α when compared to wild-type. UNC93B1 deficiency also contributed to a transient hepatitis later in acute infection, evidenced by augmented liver pathology and elevated systemic alanine aminotransferase levels. Moreover, viral clearance was impaired in UNC93B1 mutant mice, despite intact virus-specific CD8+ T cell responses in the liver. Altogether, these results suggest a combined role for nucleic acid-sensing TLRs in promoting early liver antiviral defense during MCMV infection
- …
