128 research outputs found

    Efficiency Benefits Using the Terminal Area Precision Scheduling and Spacing System

    Get PDF
    NASA has developed a capability for terminal area precision scheduling and spacing (TAPSS) to increase the use of fuel-efficient arrival procedures during periods of traffic congestion at a high-density airport. Sustained use of fuel-efficient procedures throughout the entire arrival phase of flight reduces overall fuel burn, greenhouse gas emissions and noise pollution. The TAPSS system is a 4D trajectory-based strategic planning and control tool that computes schedules and sequences for arrivals to facilitate optimal profile descents. This paper focuses on quantifying the efficiency benefits associated with using the TAPSS system, measured by reduction of level segments during aircraft descent and flight distance and time savings. The TAPSS system was tested in a series of human-in-the-loop simulations and compared to current procedures. Compared to the current use of the TMA system, simulation results indicate a reduction of total level segment distance by 50% and flight distance and time savings by 7% in the arrival portion of flight (~200 nm from the airport). The TAPSS system resulted in aircraft maintaining continuous descent operations longer and with more precision, both achieved under heavy traffic demand levels

    Rho Kinase Differentially Regulates Phosphorylation of Nonmuscle Myosin II Isoforms A and B during Cell Rounding and Migration

    Get PDF
    The actin-myosin cytoskeleton is generally accepted to produce the contractile forces necessary for cellular processes such as cell rounding and migration. All vertebrates examined to date are known to express at least two isoforms of non-muscle myosin II, referred to as myosin IIA and myosin IIB. Studies of myosin IIA and IIB in cultured cells and null mice suggest that these isoforms perform distinct functions. However, how each myosin II isoform contributes individually to all the cellular functions attributed to "myosin II" has yet to be fully characterized. Using isoform-specific small-interfering RNAs, we found that depletion of either isoform resulted in opposing migration phenotypes, with myosin IIA- and IIB-depleted cells exhibiting higher and lower wound healing migration rates, respectively. In addition, myosin IIA-depleted cells demonstrated impaired thrombin-induced cell rounding and undertook a more motile morphology, exhibiting decreased amounts of stress fibers and focal adhesions, with concomitant increases in cellular protrusions. Cells depleted of myosin IIB, however, were efficient in thrombin-induced cell rounding, displayed a more retractile phenotype, and maintained focal adhesions but only in the periphery. Last, we present evidence that Rho kinase preferentially regulates phosphorylation of the regulatory light chain associated with myosin IIA. Our data suggest that the myosin IIA and IIB isoforms are regulated by different signaling pathways to perform distinct cellular activities and that myosin IIA is preferentially required for Rho-mediated contractile functions

    SWCam: the short wavelength camera for the CCAT Observatory

    Get PDF
    We describe the Short Wavelength Camera (SWCam) for the CCAT observatory including the primary science drivers, the coupling of the science drivers to the instrument requirements, the resulting implementation of the design, and its performance expectations at first light. CCAT is a 25 m submillimeter telescope planned to operate at 5600 meters, near the summit of Cerro Chajnantor in the Atacama Desert in northern Chile. CCAT is designed to give a total wave front error of 12.5 μm rms, so that combined with its high and exceptionally dry site, the facility will provide unsurpassed point source sensitivity deep into the short submillimeter bands to wavelengths as short as the 200 μm telluric window. The SWCam system consists of 7 sub-cameras that address 4 different telluric windows: 4 subcameras at 350 μm, 1 at 450 μm, 1 at 850 μm, and 1 at 2 mm wavelength. Each sub-camera has a 6’ diameter field of view, so that the total instantaneous field of view for SWCam is equivalent to a 16’ diameter circle. Each focal plane is populated with near unit filling factor arrays of Lumped Element Kinetic Inductance Detectors (LEKIDs) with pixels scaled to subtend an solid angle of (λ/D)2 on the sky. The total pixel count is 57,160. We expect background limited performance at each wavelength, and to be able to map < 35(°)2 of sky to 5 σ on the confusion noise at each wavelength per year with this first light instrument. Our primary science goal is to resolve the Cosmic Far-IR Background (CIRB) in our four colors so that we may explore the star and galaxy formation history of the Universe extending to within 500 million years of the Big Bang. CCAT's large and high-accuracy aperture, its fast slewing speed, use of instruments with large format arrays, and being located at a superb site enables mapping speeds of up to three orders of magnitude larger than contemporary or near future facilities and makes it uniquely sensitive, especially in the short submm bands

    MLK3 Limits Activated Gαq Signaling to Rho by Binding to p63RhoGEF

    Get PDF
    Mixed lineage kinase 3 (MLK3) is a MAP3K that activates the JNK-dependent MAPK pathways. Here we show that MLK3 is required for cell migration in a manner independent of its role as a MAP3K or MLK3 kinase activity. Rather, MLK3 functions in a regulated way to limit levels of the activated GTPase, Rho, by binding to the Rho activator, p63RhoGEF/GEFT, which, in turn, prevents its activation by Gαq. These findings demonstrate a scaffolding role for MLK3 in controlling the extent of Rho activation that modulates cell migration. Moreover, they suggest that MLK3 functions as a network hub that links a number of signaling pathways

    Cost-Effective Icy Bodies Exploration using Small Satellite Missions

    Get PDF
    It has long been known that Saturn's moon Enceladus is expelling water-rich plumes into space, providing passing spacecraft with a window into what is hidden underneath its frozen crust. Recent discoveries indicate that similar events could also occur on other bodies in the solar system, such as Jupiter's moon Europa and the dwarf planet Ceres in the asteroid belt. These plumes provide a possible giant leap forward in the search for organics and assessing habitability beyond Earth, stepping stones toward the long-term goal of finding extraterrestrial life. The United States Congress recently requested mission designs to Europa, to fit within a cost cap of $1B, much less than previous mission designs' estimates. Here, innovative cost-effective small spacecraft designs for the deep-space exploration of these icy worlds, using new and emerging enabling technologies, and how to explore the outer solar system on a budget below the cost horizon of a flagship mission, are investigated. Science requirements, instruments selection, rendezvous trajectories, and spacecraft designs are some topics detailed. The mission concepts revolve around a comparably small-sized and low-cost Plume Chaser spacecraft, instrumented to characterize the vapor constituents encountered on its trajectory. In the event that a plume is not encountered, an ejecta plume can be artificially created by a companion spacecraft, the Plume Maker, on the target body at a location timed with the passage of the Plume Chaser spacecraft. Especially in the case of Ceres, such a mission could be a great complimentary mission to Dawn, as well as a possible future Europa Clipper mission. The comparably small volume of the spacecraft enables a launch to GTO as a secondary payload, providing multiple launch opportunities per year. Plume Maker's design is nearly identical to the Plume Chaser, and fits within the constraints for a secondary payload launch. The cost-effectiveness of small spacecraft missions enables the exploration of multiple solar system bodies in reasonable timeframes despite budgetary constraints, with only minor adaptations. The work presented here is a summary of concepts targeting icy bodies, such as Europa and Ceres, which have been developed over the last year at NASA Ames Research Center's Mission Design Division. The platforms detailed in this work are also applicable to the cost-effective exploration of many other small icy bodies in the solar system

    AmFm and lithium gap stars: Stellar evolution models with mass loss

    Full text link
    A thorough study of the effects of mass loss on internal and surface abundances of A and F stars is carried out in order to constrain mass loss rates for these stars, as well as further elucidate some of the processes which compete with atomic diffusion. Self-consistent stellar evolution models of 1.3 to 2.5 M_sun stars including atomic diffusion and radiative accelerations for all species within the OPAL opacity database were computed with mass loss and compared to observations as well as previous calculations with turbulent mixing. Models with unseparated mass loss rates between 5 x 10^-14 and 10^-13 M_sun/yr reproduce observations for many cluster AmFm stars as well as Sirius A and o Leonis. These models also explain cool Fm stars, but not the Hyades lithium gap. Like turbulent mixing, these mass loss rates reduce surface abundance anomalies; however, their effects are very different with respect to internal abundances. For most of the main sequence lifetime of an A or F star, surface abundances in the presence of such mass loss depend on separation which takes place between log(Delta M/M_star)= -6 and -5. The current observational constraints do not allow us to conclude that mass loss is to be preferred over turbulent mixing (induced by rotation or otherwise) in order to explain the AmFm phenomenon. Internal concentration variations which could be detectable through asteroseismic tests should provide further information. If atomic diffusion coupled with mass loss are to explain the Hyades Li gap, the wind would need to be separated.Comment: 27 pages, 25 figures, accepted for publication in A&

    Time scales of Li evolution: a homogeneous analysis of open clusters from ZAMS to late-MS

    Full text link
    We have performed a new and homogeneous analysis of all the Li data available in the literature for main sequence stars (spectral-types from late F to K) in open clusters. In the present paper we focus on a detailed investigation of MS Li depletion and its time scales for stars in the 6350-5500 K effective temperature range. For the first time, we were able to constrain the age at which non-standard mixing processes, driving MS Li depletion, appear. We have also shown that MS Li depletion is not a continuous process and cannot be simply described by a t^(-alpha) law. We confirm that depletion becomes ineffective beyond an age of 1-2 Gyr for the majority of the stars, leading to a Li plateau at old ages. We compared the empirical scenario of Li as a function of age with the predictions of three non-standard models. We found that models including only gravity waves as main mixing process are not able to fit the Li vs. age pattern and thus this kind of mixing can be excluded as the predominant mechanism responsible for Li depletion. On the other hand, models including slow mixing induced by rotation and angular momentum loss, and in particular those including also diffusive processes not related to rotation, can explain to some extent the empirical evidence. However, none of the currently proposed models can fit the plateau at old ages.Comment: 20 pages, 10 figures A&A accepte

    Scintillation Observations and Response of The Ionosphere to Electrodynamics (SORTIE) Mission First Light

    Get PDF
    At low and middle latitudes, wave-like plasma perturbations are thought to provide the seeds for larger perturbations that may evolve non-linearly to produce irregularities, which in turn have deleterious effects on HF communications and global positioning systems. Unfortunately, there is currently no comprehensive atlas of measurements describing the global spatial or temporal distribution of wave-like perturbations in the ionosphere. The SORTIE mission, a CubeSat experiment with team members from ASTRA, AFRL, UTD, and Boston College, was designed to help map and further understand the wave-like plasma perturbation distributions throughout the ionosphere. The SORTIE 6U CubeSat sensor package measures key in-situ plasma parameters, and includes an ion velocity meter and a planar Langmuir probe. SORTIE will provide (1) the initial spectrum of wave perturbations which are the starting point for plasma instabilities; (2) measured electric fields which determine the magnitude of the instability growth rate near the region where plasma bubbles are generated; (3) initial observations of irregularities in plasma density which result from plasma instability growth. The SORTIE spacecraft was deployed from the ISS in February 2020 and began data collections shortly after orbit insertion. The measurements are expected to continue for at least a year. In this presentation we present the first light results of the SORTIE mission, as well as reviewing the science objectives and providing an overview of the spacecraft and instruments

    Results of external quality assessment for proviral DNA testing of HIV tropism in the Maraviroc switch collaborative study

    Get PDF
    The Maraviroc Switch collaborative study (MARCH) is a study in aviremic patients on stable antiretroviral therapy and utilizes population-based sequencing of proviral DNA to determine HIV tropism and susceptibility to maraviroc. An external quality assessment (EQA) program was implemented to ensure competency in assessing the tropism of clinical samples conducted by MARCH laboratories (n = 14). The MARCH EQA has three prestudy phases assessing V3 loop sequencing and tropism determination using the bioinformatic algorithm geno2pheno, which generates a false-positive rate (FPR). DNA sequences with low FPRs are more likely to be from CXCR4-using (X4) viruses. Phase 1 of the EQA involved chromatogram interpretation. Phases 2, 2/3, and 3 involved patient and clonal samples. Clinical samples used in these phases were from treatment-experienced HIVinfected volunteers; 18/20 had viral loads o
    corecore