11 research outputs found

    Orthogonal techniques to study the effect of pH, sucrose and arginine salts on monoclonal antibody physical stability and aggregation during long-term storage

    Get PDF
    Understanding the effects of additives on therapeutic protein stability is of paramount importance for obtaining stable formulations. In this work, we apply several high- and medium-throughput methods to study the physical stability of a model monoclonal antibody at pH 5.0 and 6.5 in the presence of sucrose, arginine hydrochloride and arginine glutamate. In low ionic strength buffer, the addition of salts reduces the antibody colloidal and thermal stability, attributed to screening of electrostatic interactions. The presence of glutamate ion in the arginine salt partially reduces the damaging effect of ionic strength increase. The addition of 280 mM sucrose shifts the thermal protein unfolding to a higher temperature. Arginine salts in the used concentration reduce the relative monomer yield after refolding from urea, while sucrose has a favorable effect on antibody refolding. In addition, we show 12-month long-term stability data and observe correlations between thermal protein stability, relative monomer yield after refolding and monomer loss during storage. The monomer loss during storage is related to protein aggregation and formation of subvisible particles in some of the formulations. This study shows that the effect of commonly used additives on the long-term antibody physical stability can be predicted using orthogonal biophysical measurements

    Binding of excipients is a poor predictor for aggregation kinetics of biopharmaceutical proteins

    No full text
    One of the major challenges in formulation development of biopharmaceuticals is improving long-term storage stability, which is often achieved by addition of excipients to the final formulation. Finding the optimal excipient for a given protein is usually done using a trial-and-error approach, due to the lack of general understanding of how excipients work for a particular protein. Previously, preferential interactions (binding or exclusion) of excipients with proteins were postulated as a mechanism explaining diversity in the stabilisation effects. Weak preferential binding is however difficult to quantify experimentally, and the question remains whether the formulation process should seek excipients which preferentially bind with proteins, or not. Here, we apply solution NMR spectroscopy to comprehensively evaluate protein-excipient interactions between therapeutically relevant proteins and commonly used excipients. Additionally, we evaluate the effect of excipients on thermal and colloidal protein stability, on aggregation kinetics and protein storage stability at elevated temperatures. We show that there is a weak negative correlation between the strength of protein-excipient interactions and effect on enhancing protein thermal stability. We found that the overall protein-excipient binding per se can be a poor criterion for choosing excipients enhancing formulation stability. Experiments on a diverse set of excipients and test proteins reveal that while excipients affect all of the different aspects of protein stability, the effects are very much protein specific, and care must be taken to avoid apparent generalisations if a smaller dataset is being used

    Biophysical Characterization of Binary Therapeutic Monoclonal Antibody Mixtures

    No full text
    Coformulations containing two therapeutic monoclonal antibodies (mAbs) could offer various benefits like enhanced therapeutic efficacy and better patient compliance. However, there are very few published studies on coformulations and binary mixtures of mAbs. It remains unclear to what extent mAbs with different physicochemical properties can be combined in solution without detrimental effects on protein stability. Here, we present a study including six model mAbs of the IgG1 subclass that are commercially available. In silico and biophysical characterization shows that the proteins have different physicochemical properties. Thus, their combinations represent various scenarios for coformulation development. We prepared all possible binary mixtures of the six mAbs and determined several biophysical parameters that are assessed during early-stage protein drug product development. The measured biophysical parameters are indicative of the conformational protein stability (inflection points of the thermal protein unfolding transitions) and the colloidal protein stability (aggregation onset temperatures and interaction parameter kD from dynamic light scattering). Remarkably, all 15 binary mAb mixtures do not exhibit biophysical parameters that indicate inferior conformational or colloidal stability compared to the least stable mAb in the mixture. Our findings suggest that the coformulation of some therapeutic monoclonal antibodies of the IgG1 subclass could be possible in a straightforward way as severe detrimental effects on the stability of these proteins in binary mixtures were not observed

    Approaches to expand the conventional toolbox for discovery and selection of antibodies with drug-like physicochemical properties.

    No full text
    Funder: from the special research fund of Ghent UniversityAntibody drugs should exhibit not only high-binding affinity for their target antigens but also favorable physicochemical drug-like properties. Such drug-like biophysical properties are essential for the successful development of antibody drug products. The traditional approaches used in antibody drug development require significant experimentation to produce, optimize, and characterize many candidates. Therefore, it is attractive to integrate new methods that can optimize the process of selecting antibodies with both desired target-binding and drug-like biophysical properties. Here, we summarize a selection of techniques that can complement the conventional toolbox used to de-risk antibody drug development. These techniques can be integrated at different stages of the antibody development process to reduce the frequency of physicochemical liabilities in antibody libraries during initial discovery and to co-optimize multiple antibody features during early-stage antibody engineering and affinity maturation. Moreover, we highlight biophysical and computational approaches that can be used to predict physical degradation pathways relevant for long-term storage and in-use stability to reduce the need for extensive experimentation

    Orthogonal techniques to study the effect of pH, sucrose and arginine salts on monoclonal antibody physical stability and aggregation during long-term storage

    No full text
    Understanding the effects of additives on therapeutic protein stability is of paramount importance for obtaining stable formulations. In this work, we apply several high- and medium-throughput methods to study the physical stability of a model monoclonal antibody at pH 5.0 and 6.5 in the presence of sucrose, arginine hydrochloride, and arginine glutamate. In low ionic strength buffer, the addition of salts reduces the antibody colloidal and thermal stability, attributed to screening of electrostatic interactions. The presence of glutamate ion in the arginine salt partially reduces the damaging effect of ionic strength increase. The addition of 280 mM sucrose shifts the thermal protein unfolding to a higher temperature. Arginine salts in the used concentration reduce the relative monomer yield after refolding from urea, whereas sucrose has a favorable effect on antibody refolding. In addition, we show 12-month long-term stability data and observe correlations between thermal protein stability, relative monomer yield after refolding, and monomer loss during storage. The monomer loss during storage is related to protein aggregation and formation of subvisible particles in some of the formulations. This study shows that the effect of commonly used additives on the long-term antibody physical stability can be predicted using orthogonal biophysical measurements

    Extrinsic stabilization of antiviral ACE2-Fc fusion proteins targeting SARS-CoV-2

    No full text
    The solution structure, stability, and dynamics of a broadly-acting antiviral ACE2-IgG-Fc fusion protein are determined. Small chemical compounds binding to ACE2 can be used to drastically increase the thermal stability of the ACE2 domain

    Advancing Therapeutic Protein Discovery and Development through Comprehensive Computational and Biophysical Characterization

    No full text
    Therapeutic protein candidates should exhibit favorable properties that render them suitable to become drugs. Nevertheless, there are no well-established guidelines for the efficient selection of proteinaceous molecules with desired features during early stage development. Such guidelines can emerge only from a large body of published research that employs orthogonal techniques to characterize therapeutic proteins in different formulations. In this work, we share a study on a diverse group of proteins, including their primary sequences, purity data, and computational and biophysical characterization at different pH and ionic strength. We report weak linear correlations between many of the biophysical parameters. We suggest that a stability comparison of diverse therapeutic protein candidates should be based on a computational and biophysical characterization in multiple formulation conditions, as the latter can largely determine whether a protein is above or below a certain stability threshold. We use the presented data set to calculate several stability risk scores obtained with an increasing level of analytical effort and show how they correlate with protein aggregation during storage. Our work highlights the importance of developing combined risk scores that can be used for early stage developability assessment. We suggest that such scores can have high prediction accuracy only when they are based on protein stability characterization in different solution conditions
    corecore