354 research outputs found

    Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data

    Get PDF
    The latitudinal gradient of the start of the growing season (SOS) and the end of the growing season (EOS) were quantified in Alaska (61°N to 71°N) using satellite-based and ground-based datasets. The Alaskan evergreen needleleaf forests are sparse and the understory vegetation has a substantial impact on the satellite signal. We evaluated SOS and EOS of understory and tundra vegetation using time-lapse camera images. From the comparison of three SOS algorithms for determining SOS from two satellite datasets (SPOT-VEGETATION and Terra-MODIS), we found that the satellite-based SOS timing was consistent with the leaf emergence of the forest understory and tundra vegetation. The ensemble average of SOS over all satellite algorithms can be used as a measure of spring leaf emergence for understory and tundra vegetation. In contrast, the relationship between the ground-based and satellite-based EOSs was not as strong as that of SOS both for boreal forest and tundra sites because of the large biases between those two EOSs (19 to 26 days). The satellite-based EOS was more relevant to snowfall events than the senescence of understory or tundra. The plant canopy radiative transfer simulation suggested that 84–86% of the NDVI seasonal amplitude could be a reasonable threshold for the EOS determination. The latitudinal gradients of SOS and EOS evaluated by the satellite and ground data were consistent and the satellite-derived SOS and EOS were 3.5 to 5.7 days degree− 1 and − 2.3 to − 2.7 days degree− 1, which corresponded to the spring (May) temperature sensitivity of − 2.5 to − 3.9 days °C− 1 in SOS and the autumn (August and September) temperature sensitivity of 3.0 to 4.6 days °C− 1 in EOS. This demonstrates the possible impact of phenology in spruce forest understory and tundra ecosystems in response to climate change in the warming Artic and sub-Arctic regions

    Accurate detection of year-to-year variability of plant phenology in an open-canopy black spruce forest in Alaska

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所1階交流アトリウ

    衛星画像を用いたタイガ-ツンドラ境界のヤナギ及び水生植生の分類

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所1階交流アトリウ

    GRENE-TEA Model Intercomparison Project (GTMIP): Stages 1 & 2

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所 2階 大会議

    The Response of the Surface Wind Speed to the Synoptic Pressure Gradient in Central Japan

    No full text

    Recent Progress in Mesoscale Climatology

    No full text
    corecore