295 research outputs found

    Law as Deliberative Discourse: The Politics of International Legal Argument - Social Theory with Historical Illustrations

    Get PDF
    This article proposes an account of international law as a subset of international political argument, in turn understood as a practice of deliberative discourse. I draw on a Habermasian communicative framework to integrate legal and political argument, facilitating a more nuanced, and more plausible, understanding of how international law and politics interact. Through a detailed examination of two historical cases from the first decade of the Northern Ireland conflict, involving the United Nations and the European Convention on Human Rights respectively, I illustrate three key dimensions of this framework: the relation between legal and political argument; the relation between domestic and international argument; and the distinction between strategic and communicative uses of legal argument

    Eukaryotic virus composition can predict the efficiency of carbon export in the global ocean

    Get PDF
    海洋ウイルスの種組成と炭素の鉛直輸送の相関を確認 --ウイルスによる地球環境の制御を示唆. 京都大学プレスリリース. 2021-01-15.The biological carbon pump, in which carbon fixed by photosynthesis is exported to the deep ocean through sinking, is a major process in Earth's carbon cycle. The proportion of primary production that is exported is termed the carbon export efficiency (CEE). Based on in-lab or regional scale observations, viruses were previously suggested to affect the CEE (i.e., viral “shunt” and “shuttle”). In this study, we tested associations between viral community composition and CEE measured at a global scale. A regression model based on relative abundance of viral marker genes explained 67% of the variation in CEE. Viruses with high importance in the model were predicted to infect ecologically important hosts. These results are consistent with the view that the viral shunt and shuttle functions at a large scale and further imply that viruses likely act in this process in a way dependent on their hosts and ecosystem dynamics

    Radiative cooling effects on reverse shocks formed by magnetised supersonic plasma flows

    Get PDF
    We study the structure of reverse shocks formed by the collision of supersonic, magnetised plasma flows driven by an inverse (or exploding) wire array with a planar conducting obstacle. We observe that the structure of these reverse shocks varies dramatically with wire material, despite the similar upstream flow velocities and mass densities. For aluminium wire arrays, the shock is sharp and well defined, consistent with magneto-hydrodynamic theory. In contrast, we do not observe a well-defined shock using tungsten wires, instead, we see a broad region dominated by density fluctuations on a wide range of spatial scales. We diagnose these two very different interactions using interferometry, Thomson scattering, shadowgraphy, and a newly developed imaging refractometer which is sensitive to small deflections of the probing laser corresponding to small-scale density perturbations. We conclude that the differences in shock structure are most likely due to radiative cooling instabilities which create small-scale density perturbations elongated along magnetic field lines in the tungsten plasma. These instabilities grow more slowly and are smoothed by thermal conduction in the aluminium plasma

    Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics

    Get PDF
    Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S). The biomass of smaller organisms (detritivores) was higher under more stable hydrological conditions. Conversely, the biomass of predators was highest when rainfall was uneven, resulting in top-heavy biomass pyramids. These results illustrate how extremes of precipitation, resulting in localized droughts or flooding, can erode the base of freshwater food webs, with negative implications for the stability of trophic dynamics

    A Minimal Model for Multiple Epidemics and Immunity Spreading

    Get PDF
    Pathogens and parasites are ubiquitous in the living world, being limited only by availability of suitable hosts. The ability to transmit a particular disease depends on competing infections as well as on the status of host immunity. Multiple diseases compete for the same resource and their fate is coupled to each other. Such couplings have many facets, for example cross-immunization between related influenza strains, mutual inhibition by killing the host, or possible even a mutual catalytic effect if host immunity is impaired. We here introduce a minimal model for an unlimited number of unrelated pathogens whose interaction is simplified to simple mutual exclusion. The model incorporates an ongoing development of host immunity to past diseases, while leaving the system open for emergence of new diseases. The model exhibits a rich dynamical behavior with interacting infection waves, leaving broad trails of immunization in the host population. This obtained immunization pattern depends only on the system size and on the mutation rate that initiates new diseases
    corecore