60 research outputs found

    Specific antibody response of mice after immunization with COS-7 cell derived avian influenza virus (H5N1) recombinant proteins

    Get PDF
    To develop avian influenza H5N1 recombinant protein, the hemagglutinin (HA), neuraminidase (NA), matrix (M), and non-structural (NS1) of avian influenza H5N1 isolates from Thailand were engineered to be expressed in prokaryotic (E. coli) and mammalian cell (COS-7) system. The plasmid pBAD-His and pSec-His were used as vectors for these inserted genes. Mice immunized with purified recombinant proteins at concentration 50–250 μg intramuscularly with Alum adjuvant at week 0, week 2, and week 3 showed a good immunogenicity measured by ELISA and neutralization assay. The HA and NS recombinant proteins produced in COS-7 cells can induce specific antibody titer detected by neutralization assay significantly higher than corresponding recombinant proteins produced in E. coli system. The antibody produced in immunized mice could neutralize heterologous avian influenza virus determined by micro-neutralization assay. This study shows that avian influenza virus H5N1 recombinant proteins produced in mammalian cell system were able to induce neutralizing antibody response

    HIV-1 Viral loas assays for resource-limited settings

    Get PDF
    Tremendous strides have been made in treating HIV-1 infection in industrialized countries. Combination therapy with antiretroviral (ARV) drugs suppresses virus replication, delays disease progression, and reduces mortality. In industrialized settings, plasma viral load assays are used in combination with CD4 cell counts to determine when to initiate therapy and when a regimen is failing. In addition, unlike serologic assays, these assays may be used to diagnose perinatal or acute HIV-1 infection. Unfortunately, the full benefits of antiretroviral drugs and monitoring tests have not yet reached the majority of HIV-1-infected patients who live in countries with limited resources. In this article we discuss existing data on the performance of alternative viral load assays that might be useful in resource-limited settings

    International Network for Comparison of HIV Neutralization Assays: The NeutNet Report

    Get PDF
    BACKGROUND: Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays. METHODS: Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression. FINDINGS: PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent. CONCLUSIONS: The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation

    The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context?

    Get PDF
    International audienceIn most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1

    Labcode 11- HIV neutralization Protocol PBMC Neutralization assay

    No full text
    This protocol describes a HIV neutralisation assay based on reduction in virus infectivity following exposure to monoclonal reagents. Virus infection in donor PHA-stimulated peripheral blood mononuclear cells is assessed by quantitative RT-PCR in culture supernatants two days after infection
    • …
    corecore