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REVIEW Open Access

The role of neutralizing antibodies in prevention
of HIV-1 infection: what can we learn from the
mother-to-child transmission context?
Martine Braibant1* and Francis Barin1,2

Abstract

In most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced

neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an

immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the

most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be

studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of

pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from

new infections during the first weeks or months of life. During the last few years, strong data, presented in this

review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of

transmission, it has been shown that the viral population that is transmitted from the mother to the infant is

usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the

breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific

HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that

could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that

would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection

against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with

the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies,

which included only a few selected subtype B challenge viruses, provide data limited to protection against a very

restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent

identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate

the efficacy of passive immunization to prevent MTCT of HIV-1.

Keywords: HIV-1, Neutralizing antibodies, Mother-to-child transmission, Preventive vaccine, Passive immunization,

Immunoprophylaxis

Review
Introduction

UNAIDS estimates that there were 34.0 million people

living with the human immunodeficiency virus (HIV) at

the end of 2011. The development of a safe, effective,

preventive HIV vaccine remains among the highest glo-

bal health priorities. Most vaccines that successfully con-

trol viral diseases induce the production of neutralizing

antibodies (NAbs) that prevent infection. In the case of

HIV-1, a key element for NAbs to be effective in pre-

venting infection is their capacity to neutralize the highly

diverse circulating HIV-1 variants, which can differ by

more than 30% in the sequences of their envelope glyco-

proteins. Encouragement for the development of a NAb-

based anti-HIV-1 vaccine was provided by successful

passive immunization studies in macaque models show-

ing that broadly human monoclonal NAbs administered

orally, vaginally or intravenously could prevent the ac-

quisition of infection [1-10]. Despite the fact that in

some of these experiments, the viral strain used for
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challenge was particularly sensitive to neutralization by

the passively administered NAbs, these results provided

the proof-of-concept that antibodies can block HIV-1 in-

fection. Unfortunately, the capability of vaccine candi-

dates to induce NAbs has turned out to be extremely

complex and disappointing. First attempts to develop

antibody-based anti-HIV-1 vaccines in man involved re-

combinant protein immunogens based on monomeric

forms of the surface-exposed gp120 component of the

envelope glycoprotein (AIDSVAX gp120 B/B and B/E)

[11-13]. High levels of antigen-specific antibodies were

induced in human vaccinees but failed to neutralize most

primary isolates and did not confer protection [14-17].

More recently, the RV144 vaccine trial based on a prime-

boost regimen consisting of a recombinant canarypox

vector prime (ALVAC-HIV) and gp120 protein boost

(AIDSVAX gp120 B/E), showed only moderate protection

in low-incidence heterosexuals [18]. These trials, in a real

life situation, have indicated the limitations of animal

model studies that used only a few selected challenge viral

strains. They also highlighted the probable need to de-

velop more sophisticated envelope immunogens. For this,

lessons from studies aiming at dissecting the antibody re-

sponse during natural infection might be particularly

useful. It has been shown recently that broadly NAbs, de-

veloped after several years of infection by some HIV-1

infected patients, require a high level a somatic mutations

to become broad and potent [19-24]. This suggests that

an effective vaccine may require a combination of various

envelopes to direct B-cell responses through multiple

rounds of antibody maturation and mutation process [25].

Another key question for vaccine development is the iden-

tification of correlates of protection. Indeed, the specificity

and magnitude of the NAbs response required to confer

protection against HIV-1 transmission in humans are still

unclear, and progress in this field is a key step on the road

to an effective HIV-1 vaccine.

Mother-to-child transmission: a model to identify

correlates of protection

Mother-to-child transmission (MTCT) of HIV-1 is cur-

rently the principal cause of HIV infections in children.

Whereas access of HIV pregnant women to antiretroviral

therapy has increased significantly, HIV infection in chil-

dren remains a major concern. In 2011, an estimated

330,000 children were newly infected with HIV (UNAIDS).

Without any antiretroviral treatment, MTCT rate of HIV-1

is around 30 to 40% and occurs mainly at three stages: in

utero during pregnancy (5-10%), perinatally at the time of

labor and delivery (15-20%), and postpartum through

breastfeeding (10-15%) [26-29] (Figure 1). This contrasts

with a much lower rate of MTCT of HIV-2 which, in ab-

sence of antiretroviral treatment, ranges from 0% to 4%

only [30-34]. Despite the high transmission rates of HIV-1,

a large number of children exposed to HIV-1 do not

become infected. Several maternal factors, including low

CD4+ T-cells counts and high viral loads are associated

with an increasing risk of HIV-1 MTCT [35]. The lower

plasma viral load in HIV-2 infected patients, compared to

HIV-1 infected patients, may account for the lower MTCT

risk for HIV-2 [33,34,36-40].

The role of maternal immune response in limiting

HIV-1 transmission to the infant is still unclear. The pla-

centa is relatively impermeable to IgA and IgM, levels of

which are therefore very low in the newborn. In con-

trast, maternal IgG are transported over the placenta by

an active process mediated by the FcRn receptor [41].

The timing of maternal IgG passage across the placenta

during pregnancy was addressed in several studies (for a

review see [42]). During the first trimester, very little IgG

is transmitted to the fetus, but in the second trimester, the

fetal IgG concentration increases from approximately 10%

of the maternal concentration at 17–22 weeks of gestation

to 50% at 28–32 weeks [41,43-45]. During the third

trimester, fetal IgG levels continue to rise, reaching normal

or somewhat exceeding adult levels at term [45-50]

(Figure 1). It was illustrated recently in the HIV-1 context

in a study that showed that the envelope binding antibody

titers were strongly correlated and similar between

mothers and their corresponding infants [51]. MTCT con-

stitutes therefore an attractive model to explore the puta-

tive protecting role of passively acquired HIV-specific IgG
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Figure 1 Infant antibody levels over the three possible stages

(in utero, perinatally or postpartum) of mother-to-child

transmission of HIV-1. During pregnancy, maternal IgG are

transmitted to the fetus across the placenta, reaching normal or

somewhat exceeding adult levels at term. After birth, the IgG

transferred from the mother disappear progressively, while the

amount of IgG being produced by the infant continues to increase.

In contrast, the placenta is relatively impermeable to Ig of other

classes, levels of which are therefore very low in the newborn.
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against HIV acquisition. In the absence of data on the pu-

tative role of NAbs in prevention of MTCT of HIV-2, this

review will focus on HIV-1 infection that has been the

subject of intensive investigations.

Selective transmission of HIV-1 variants from mothers to

infants

The first molecular studies of env sequences diversity is-

sued from infected individuals, adults as well as children,

have shown that most of acute/recent infections are

characterized by the presence of a highly homogenous

genetically-restricted virus population in contrast to the

high genetic diversity observed several years later at time

of chronic infection [52-62]. These observations led

rapidly to the assumption of a substantial bottleneck in

virus transmission (Figure 2A). Recently, the use of sin-

gle genome amplification (SGA) of HIV-1 plasma viral

RNA obtained from acutely infected adult individuals,

allowed the identification of transmitted/early founder

viruses, and the precise estimation of their diversity

[63-67]. These studies showed evidence of infection by a

single virus in ~80% of heterosexuals and ~60% of HIV-

infected men who have sex with men [63,64,66,67]. In

contrast, the frequency of multiple variants transmission

was found to be higher among intravenous (IV) drug

users (~60%), including one subject who was infected by

at least 16 variants [65]. The high frequency of mutiple-

variants transmission in IV drug users could be due to

the absence of a mucosal barrier to virus transmission

and higher virus inocula. To date, such large studies

have not been conducted on samples from children

born to infected mothers. However this question has

been considered using different molecular approaches

(Table 1) (Figure 2B) [61,68-89]. Data vary from one

study to another but all together, comparing the viral

population in mother-child pairs, they showed a homo-

geneous genetically-restricted population in the major-

ity of infected infants (156 of 235; table I), suggesting a

selective transmission of some viral variants during

MTCT (Figure 2B). The lack of consensus among these

studies may be due to the fact that many studies com-

pared only a limited number of mother-child pairs and

did not address the route of transmission (in utero, peri-

natally or postpartum through early breasfeeding). In

A

B

Genetic bottleneck

Transmitted early founder virus

Donor quasispecies

Pair 0540 Pair 1333

Figure 2 Selective transmission of HIV-1. A. The quasispecies of the chronically infected donor is usually composed of a major viral population

(dark blue virions), as well as numerous other minor variants. One of these minor variants (yellow virion) successfully crosses the mucosal barrier

to generate the infection of the recipient. B. The neighbor-joining trees of HIV-1 env gp120 nucleotide sequences issued from two mother-infant

pairs show the transmission of a single maternal viral variant [85]. Bootstrap values are expressed as percentages per 1000 replicates. Only

bootstrap values >50% are indicated. Horizontal branch lengths are drawn to scale, with the black bar denoting 1% divergence. Each symbol

denotes a single env sequence; □, maternal sequence; ●, infant sequence.
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addition, the ages of the infants at time of sample col-

lection varied considerably among studies.

Focusing on transmission through breastfeeding, three

recent studies have shown that there is no or very lim-

ited viral compartmentalization between milk and blood,

suggesting that breast milk viruses are typical of circulat-

ing viruses [90-92]. As with other routes of MTCT, a

genetic bottleneck that restrict the number of variants

transmitted through breastfeeding to a single or a small

number of variants was reported [82].

Several studies examined the molecular characteristics

of the envelope glycoproteins of transmitted viruses that

might explain the selective process. Two studies of

Wolinky’s group, in which MTCT route was not defined,

reported that the potential N-linked glycosylation site

(PNGS) proximal to the first cysteine of the V3 loop

(N295) was strikingly absent from the infant’s sequence

populations but present in the majority of the maternal

sequence sets [61,68]. This observation has not been

found by other investigators [69,70,73,74]. Studies

performed on sequences encoding the full-length gp120

reported shorter variable regions and/or fewer PNGS in

clade A and C viruses transmitted from mother-to-in-

fant, mainly perinatally or early postpartum [81,86,88].

In contrast, we and others did not find altered gp120

length or PNGS number in the clade B and CRF01-AE

viruses transmitted perinatally from mothers to their in-

fants [85,87]. Interestingly enough, similar observations

were reported during or shortly after heterosexual trans-

mission of HIV-1. Transmitted viruses of subtype A and

C showed a more compact and less glycosylated gp120

but this molecular property was not observed for

sexually transmitted viruses of clade B [55,93,94]. This

highlighted potential differences in the biology of the

different subtypes, regardless of their transmission mode.

Although we did not find shorter gp120s or fewer PNGS

in maternally transmitted CRF01-AE viruses, we how-

ever found a limited number of PNGS, N301 in V3 and

Table 1 Studies of the viral population of HIV-1 infected infants

Infant samples

Infection route

Homo-/heterogeneous
population ratio References

Nature Collection time*
Amplified env

region

PBMCs 2 to 4 months V3 and V4-V5 Unspecified 3/0 [61]

PBMCs Unspecified V3 and V4-V5 Unspecified 4/0 [68]

PBMCs and serum 0 to 4 months V3 1 IU, 9 unknown 8 (1 IU)/2 [69]

Serum At birth V3 1 IU 1/0 [70]

PBMCs 0 to 12.5 months V3 1 IU, 4 unknown 2/3 (1 IU) [71]

PBMCs 2 days to 7 weeks V1-V2-C2 Unspecified 1/2 [72]

PBMCs 1 week to 34 months V3 Unspecified 7/0 [73]

PBMCs 5 days to 1.5 months V3 Probably 1 PN, 3 IU 1 (PN)/3 (IU) [74]

PBMCs and plasma 2 to 40 days C2-V3 Unspecified 3/1 [75]

PBMCs 1 month V3 Unspecified 13/4 [76]

Plasma 48 hours or 2 to 6 weeks V3-V5 9 PN, 14 IU 17 (7 PN, 10 IU)/6 (2 PN, 4 IU) [77]

PBMCs 0 or 2 to 6 months C2-V4 3 PN or early PP, 1 IU 3 (2 PN, 1 IU)/1 [78]

PBMCs 0 or 6 weeks V1-V4 7 PN or early PP, 6 IU 6 (2 IU, 4 PN)/7 (4 IU, 3 PN) [79]

PBMCs 48 hours or 2 to 6 weeks V3-V5 7 PN, 14 IU 15 (5 PN, 10 IU)/6 (2 PN, 4 IU) [80]

PBMCs or plasma 6 weeks V1-V5 8 PN or early PP, 1 IU, 3 BF 11/1 (PN) [81]

PBMCs or cord blood 0 or 6 to 15 months V1-V3 3 PP, 1 IU 4/0 [82]

PBMCs 4 to 18 months V1-V5 Unspecified 0/3 [83]

Plasma 0 or 6 weeks V1-V2 23 PN, 25 IU 20 (6 PN, 14 IU)/28 (17 PN, 11 IU) [84]

Plasma 48 hours or 6 weeks V1-V5 11 PN, 6 IU 14 (9 PN, 5 IU)/3 (2 PN, 1 IU) [85]

PBMCs 2 to 4 months V1-V5 6 PN or early PP 5/1 [86]

Plasma 30 to 66 days V1-V5 5 PN 3/2 [87]

Plasma 0 or 6 weeks V1-V5 9 PN or early PP, 10 IU 13 (5 PN, 8 IU)/6 (4 PN, 2 IU) [88]

Plasma 3 or 6 months complete env 2 PP 2/0 [89]

total: 156/235

* Time of the first PCR or coculture positive collected sample after birth.

PN: perinatally; IU: in utero; PP: postpartum through breastfeeding.
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N386 in C3, that seemed to be conserved in all infected

infants but were not uniformly present in their mothers,

suggesting that they may confer an advantage on the

virus to be transmitted [85]. By comparing functional

properties of pseudotyped viruses expressing envelopes

carrying or not N301 and/or N386, we confirmed that

these two PNGS may play a role in resistance to autolo-

gous sera [95]. Interestingly, the N-linked glycan at pos-

ition 301 was recently shown to be important for HIV-1

neutralization by several new broad and potent monoclo-

nal NAbs of the PGT series (PGT125-128, PGT130 and

PGT131) [96]. Similarly, Moore et al. recently reported in

two HIV-1-infected adults the apparition of the N-linked

glycan at position 332 targeted by PGT128, through im-

mune escape from earlier strain-specific antibodies [97]. It

could be possible that NAbs drive viral selection during

MTCT, leading to variants with conserved glycan motifs

that would confer a selective advantage.

Neutralizing antibodies: in search of correlates of protection

in the MTCT context

MTCT offers a unique opportunity to explore the puta-

tive role of NAbs in restricting or preventing infection,

especially when the transmission occurs in presence of

high levels of passively acquired maternal IgG, i.e. during

the perinatal and early breastfeeding periods. Conflicting

results have been obtained concerning the role of maternal

NAbs in reducing MTCT of HIV-1. Early studies, each

relatively small, showed that non-transmitting mothers had

more frequently detected and/or higher titers of autologous

NAbs than transmitting mothers, suggesting a role for

maternal NAbs in reducing MTCT [98-101]. Supporting

this model, a few studies have suggested that transmitted

viruses are escape variants resistant to neutralization by

maternal antibodies [80-82,102,103]. However, other studies

did not confirm these findings [88,89,95,104-106]. The

observed discordant results may be due to small sample

sizes, disparate maternal and infant sample collection time

points, and a lack of identification of the route of transmis-

sion in several studies (in utero, in absence or in presence

of only low levels of IgG, versus perinatally or early post-

partum, in presence of high levels of IgG).

Because transmitted variants were found to be resist-

ant to neutralization by their own mother’s plasma in

several studies, we previously hypothesized that protect-

ive antibodies might be those with a broad neutralizing

activity. To test this hypothesis, we conducted three large

studies, i.e. two studies in Thailand [107,108], and one

study in French patients [109], in which we compared the

breadth and levels of NAbs in sera of transmitting and

non-transmitting mothers, using panels of heterologous

primary isolates of different clades. Our data did not

support an association between the breadth of HIV-1 neu-

tralizing activity and a lower rate of MTCT of HIV-1,

whether transmission occurred in utero or perinatally (the

infants were not breast-fed). Similar results were obtained

by others in Kenyan infants of HIV-1 positive mothers

[110]. All these data clearly indicate that infants who ac-

quired broad and potent NAbs able to neutralize heterol-

ogous HIV-1 variants of different subtypes from their

mothers did not show a reduced risk of infection. How-

ever, our studies suggested that particular HIV-1 variants

might be indicators of NAbs associated with in vivo pro-

tection. Indeed we found that NAbs toward a CRF01-AE

isolate, MBA, were significantly associated with a lower

rate of MTCT in Thailand. Similarly, statistically signifi-

cant higher frequencies or titers of NAbs toward several

strains were observed in non-transmitting mothers in our

French study when the clade B-infected mothers or non

clade-B-infected mothers were analyzed separately [109].

Collectively, these data suggest that particular HIV-1 vari-

ants may provide a measure of protective antibodies de-

pending of the population. These HIV-1 variants may be

particular strains on which epitopes targeted by protective

NAbs would be particularly well exposed in contrast to

those of non-protective antibodies. The identification of

these strains would be dependent of the HIV-1 subtype of

the studied population suggesting that the neutralizing re-

sponse specificities might vary between viral subtypes.

Conducting large studies on homogeneous populations

(in terms of geographical origin, viral clade, maternal viral

loads and antiretroviral prophylaxis) to limit confounding

viral and/or host factors would be necessary to identify

such indicator strains.

The targeted epitope(s) of the neutralizing response

associated with protection was not explored in studies

cited above. To date, only one recent study conducted in

a cohort of South African patients addressed this question

by focusing on the putative role of maternal gp41-specific

antibodies passively transferred to newborns [111]. An as-

sociation of antibodies to the membrane-proximal exter-

nal region (MPER) of gp41 with virus neutralization and

protection was reported. This observation needs to be

confirmed by other studies. More particularly it should be

extended to other important conserved epitopes using

various techniques, such as serum absorption with recom-

binant Env proteins or functional neutralization assay with

various Env-pseudotyped viruses, that have been recently

developed to dissect the neutralizing activity present in

human sera [112-114]. These epitopes, most of them be-

ing of conformational nature, were identified thanks to

the isolation of human monoclonal broadly neutralizing

antibodies (HuMoNAbs) [96,115-118] (Figure 3). They are

conserved regions of the HIV-1 envelope glycoprotein

such as the CD4 binding site (CD4bs) on gp120, quater-

nary structure dependent epitopes on the V1-V2 variable

loops of gp120, glycan-dependent epitopes involving the

V3 region of gp120, and the MPER of gp41. A fine
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comparison of the specificity of the neutralizing response

between transmitting and non-transmitting mothers by

such extensive serum mapping using Env proteins or Env-

pseudotyped viruses derived from HIV-1 strains indicator

of protective antibodies should help to define more pre-

cisely if some antibody specificities correlate with protec-

tion in the MTCTcontext.

In the absence of antiretroviral prophylaxis, HIV is

transmitted via breastfeeding to only 10-15% of infants,

despite daily milk exposure. This suggests that breast milk

may contain antiviral immune factors protecting most

infants from mucosal HIV infections. HIV-1 envelope-

specific antibody responses have been detected in milk.

However, despite a predominance of secretory IgA in

milk, the magnitude of the HIV-1 envelope-specific IgA

activity is lower than that of envelope-specific IgG activity

[119-122]. Similarly, the predominant SIV envelope-

specific antibodies in milk from lactating rhesus monkeys

are of the IgG isotype [123]. This is in accordance with

what has been observed in other mucosal compartments,

such as genital tract and saliva [119,120,124-128]. A few

studies explored the putative role of envelope-specific

antibodies present in breast milk of infected mothers to

prevent infant infection. Quantitative studies of HIV or

SIV envelope-specific binding antibodies did not reveal

any difference between transmitting and non-transmitting

mothers [129-131]. However, the neutralizing activity of

these antibodies was not analyzed in these studies. Two

recent studies made extensive comparisons of the neu-

tralizing and antibody-dependent cellular cytotoxicity

(ADCC) responses in breast milk and plasma from

African HIV-infected lactating women [122,132]. Al-

though lower in magnitude, the neutralizing and ADCC

activities in milk were directly correlated with those in

plasma and were primarily mediated by plasma-derived

IgG antibodies. Similarly, SIV-specific IgA antibodies

had limited neutralization potency compared to SIV-

specific IgG in SIV-infected rhesus monkeys [123]. This

suggests that IgA-mediated neutralizing and ADCC re-

sponses did not play a major role in preventing MTCT

transmission via breastfeeding. However, the capacity of

milk IgA to block HIV-1 transcytosis across epithelial

cells was not studied. Such a protective role, recently

reported for preventing vaginal and rectal infections in

animal models, cannot be excluded [133,134]. The pre-

venting role of IgG responses in mothers’ milk is diffi-

cult to explore due to the presence in newborns of high

physiological levels of passively acquired maternal IgG.

One study reported a higher magnitude of milk IgG-

mediated ADCC in HIV-1-infected women who did not

transmit HIV to their infants postnatally than in trans-

mitters [132]. This suggests that an efficient vaccine

should be able to induce a protective humoral response

that could be transferred also through breastfeeding.

Studies of passive immunization in newborn macaques:

sterilizing immunity

The development of MTCT models of SIV infection in

macaques has been very useful to evaluate the potential

of passively transferred antibodies to prevent infection.

V3, glycans :
2G12

PGT121

PGT128

V1V2, glycans :
PG9

PG16

PGT145

CD4bs :
b12

F105

VRC01

VRC03

NIH45-46G54W

HJ16

MPER :
2F5

10E8

MPER :
4E10

Figure 3 A model of the HIV-1 Env spike with selected HuMoNAbs Fabs bound to their conserved epitopes. Adapted with permission

from AAAS - Burton et al. [118]. The names of selected HuMoNAbs are underlined. The locations of their targeted epitopes are indicated in bold

and italic. The name of other HuMoNabs targeting similar epitopes is included [96,115-117,152,153].
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A first attempt of passive immunization of newborn

rhesus macaques with pooled sera from chronically SIV-

infected rhesus macaques has been shown to be protect-

ive from oral SIV exposure that mimics the mucosal

exposure occurring during perinatal and breast-milk HIV-

1 transmission (Table 2) [1]. However, the precise mech-

anism for the protection could not be established as no

neutralizing activity of these pooled sera could be detected

in vitro against the challenge virus. At about the same

time, the first HuMoNAbs, F105, 2F5, 4E10, 2G12 and

b12, were generated and characterized (Figure 3). F105

and b12 are directed against the CD4 binding site of

gp120 [135,136], 2G12 recognizes a conformational

carbohydrate-dependent epitope on gp120 [137], and

2F5 and 4E10 are directed against the MPER of gp41

[138,139]. To evaluate the capacity of these HuMoNAbs

to prevent HIV-1 infection, chimeric simian-human

immunodeficiency viruses (SHIV) were used. Because

the SIV and HIV envelope glycoproteins are too diver-

gent to analyze their sensitivity to NAbs, SHIV were

constructed based on a SIV backbone in which the SIV

env gene was replaced by an HIV-1 env gene. The first

SHIV constructs expressed the env gene of the T-cell

line laboratory-adapted (TCLA) HIV strain IIIB which is

highly neutralization-sensitive [140-143], but constructs

using env genes from primary HIV-1 isolates were sub-

sequently made, generating more pathogenic and more

neutralization-resistant SHIV viruses [144-147]. Using

the SHIV-macaque model, several studies have shown that

passive administration of high concentrations of various

Table 2 Studies of passive immunization in newborn macaques

Treatment Challenge Sterile
protection

References

Antibody (Route, Concentration) Infusion timing Virus Route

SIV hyperimmune serum
(SC, 20 mL/kg)

- Postnatal 2 days before challenge

SIVmac 251
(105 TCID50)

Oral

- 2/2

[1]
- Postnatal 2 days before challenge
and 5 and 12 days after challenge

- 4/4

- Postanatal 3 weeks after challenge - 0/3

- HIV immune globin (HIVIG)
(IV, 400 mg/kg)

Postnatal 24 hours
before challenge

SHIV89.6PD
(40 TCID50)

IV

- 0/3

[3]

- 2F5 (IV, 15 mg/kg) - 0/3

- 2G12 (IV, 15 mg/kg) - 0/3

- 2F5 / 2G12
(IV, 15 mg/kg of each)

- 0/3

- HIVIG/2F5/2G12
(IV, 400 mg/kg of HIVIG, 15 mg/kg

of each HuMoNAb)
- 3/6

F105/2G12/2F5
(IV, 10 mg/kg of each)

Pre- and postnatal 1–4 hours before
and 8 days after challenge

SHIVIIIB-vpu+

(10 AID50)
Oral 4/4 [4]

2G12/b12/2 F5
(IV, 10 mg/kg of each)

Postnatal 1 hour before and 8 days
after challenge

- SHIVIIIB-vpu+

(10 AID50)
Oral

- 2/2

[148]
- SHIV-89.6P
(15 AID50)

- 1/4

F105/2G12/2F5
(IV, 10 mg/kg of each)

- Postnatal 3–4 hours before
challenge and 8 days after challenge SHIVIIIB-vpu+

(10 AID50)
Oral

- 2/2

[149]
- Postnatal 1 hour and 8 days after

challenge
- 2/2

2G12/b12/2F5/4E10
(IV, 30 mg/kg of each except 4E10

at 11.5 mg/kg)

Postnatal 1 hour and 8 days after
challenge

SHIV-89.6P
(15 AID50)

Oral 2/4 [6]

2G12/2F5/4E10
(IM, 40 mg/kg of each)

Postnatal 1 hour and 8 days after
challenge

SHIV-89.6P
(15 AID50)

Oral 4/4 [150]

- 2G12/b12/2 F5/4E10
(IV, 30 mg/kg of each)

- Postnatal 1 hour and 8 days after
challenge

SHIV-89.6P
(15 AID50)

Oral

- 3/4

[151]
- Post natal 12 hours and 8 days after

challenge
- 1/4

- 2G12/2F5/4E10
(IM, 40 mg/kg of each)

- Postnatal 24 hours and 9 days post
challenge

- 0/4

TCID50: 50% tissue culture infectious dose; AID50: 50% animal infectious dose.

SC: subcutaneous; IV: intravenous; IM: intramuscular.

Braibant and Barin Retrovirology 2013, 10:103 Page 7 of 14

http://www.retrovirology.com/content/10/1/103



combinations of the first-generation HuMoNAbs protected

neonatal rhesus macaques against high-dose intravenous

or oral challenge with SHIVs (Table 2) [3,4,6,148-151].

These results provided the proof-of-concept that anti-

bodies can prevent infection. However the current SHIV

models, which include only a few HIV Envs, provide data

that are limited to protection against a restricted number

of isolates and therefore has limitations when considering

the high diversity of HIV-1 isolates. In addition, these

studies highlighted the importance of the timing of admin-

istration, since HuMoNAbs must be present at the time of

viral challenge or only a few hours later to prevent the es-

tablishment of infection (sterilizing immunity) of the new-

born macaques (Table 2) (Figure 4A). There was no

protection when antibodies were administered more

than 12 hours post-virus inoculation (Figure 4B). Re-

cently, the association of several technological advances

allowed the identification of new second-generation

HuMoNAbs (particularly the PG, PGT and VRC series)

that are tenfold to 100-fold more potent in vitro than

the first-generation HuMoNAbs used in passive immu-

nization studies [96,115-117,152,153] (Figure 3). One of

these antibodies, PGT121, was able to mediate steriliz-

ing immunity against high-dose mucosal viral challenge

in adult rhesus macaques at serum concentrations that

were significantly lower than those observed in previous

studies [154]. In addition, Klein et al. re-examined the

possibility to use antibody transfer as a therapeutic mo-

dality [155]. Using a humanized mice model and combi-

nations of these new NAbs that target complementary

1st generation 

HuMo NAbs

A

B

C

1st generation 

HuMo NAbs

2nd generation 

HuMo NAbs

Time

Figure 4 Studies of passive immunization in newborn macaques. A. Passive administration of high concentrations of various combinations

of the first-generation HuMoNAbs (b12, 2G12, 2F5, 4E10, F105) (white arrow) before or simultaneously with intravenous or oral challenge with

SHIVs (green arrow) protected neonatal rhesus macaques against infection: there was no infection [4,149,150]. B. There was no protection when

the first-generation HuMoNAbs (white arrow) were administered more than 12 hours post-virus inoculation (green arrow) [151]. C. New second-

generation HuMoNAbs (PG-, PGT-, VRC-series) that are 10- to 100-fold more potent in vitro than the first-generation HuMoNAbs have been

identified [96,115-117,152,153]. It would be interesting to re-evaluate the potential protective potency of NAbs in newborn macaques when

administered either before or after (white arrow) viral exposure (green arrow).
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sites on the HIV-1 spike protein, they showed that these

antibodies could effectively control HIV-1 infection and

suppress viral load to levels below detection. Given

these new data, it would be interesting to evaluate the

protective potency of these new NAbs in newborn ma-

caques for both pre-exposure and post-exposure

prophylaxies (Figure 4C). Indeed, a recent study of pas-

sive administration of neutralizing IgG (including the

HuMoNAb b12) at levels insufficient to block infection

to newborn macaques before oral challenge with a SHIV

virus has shown that immunized macaques rapidly de-

veloped NAbs and had a significantly reduced plasma

viremia [156]. This supports the use of NAbs to aug-

ment B cell responses and viral control in perinatal set-

tings, although further studies are needed to understand

the mechanisms underlying their beneficial effects.

Prevention of mother to child transmission :

immunoprophylaxis

MTCT of HIV-1 infection remains a significant problem

in developing countries. Antiretroviral (ARV) prophy-

laxis can reduce the number of infections, but it does

not eliminate the transmission risk. ARV efficacy is

highly dependent on strict adherence to daily adminis-

tration that is difficult to achieve for many women/ba-

bies. Even with optimal prophylaxis, infections occur at

a rate of 1 to 5% at 6 months of age in infants of HIV-1

infected mothers who breastfeed [157]. Additional inter-

ventions that ideally do not rely on daily adherence to

prevent transmission during prolonged breastfeeding

need to be identified [158]. The use of an anti-HIV-1 pas-

sive immunization approach in addition to ARV prophy-

laxis could provide additional protection and deserves to

be explored.

Passive immunization experiments of rhesus macaques

have proven that NAbs can protect from MTCT. In

humans, there are only 2 phase III studies of passive

immunization to prevent MTCT that have been con-

ducted. Both used polyclonal hyperimmune globulin

preparations from HIV-1-infected donors. The first

study was conducted in 1993–1997 in the United States

in a non-breastfeeding population of HIV-1 infected

pregnant women receiving zidovudine prophylaxis [159].

The second was conducted in 2004–2006 in Uganda in

breastfeeding pregnant mothers receiving single-dose

nevirapine [160]. Although the infusion of HIV hyper-

immune preparations was proven to be safe, no add-

itional benefit of these polyclonal preparations compared

to antiretroviral treatment alone was shown in these two

studies. However, it may be possible that polyclonal prepa-

rations did not contain enough NAbs specificities able to

provide sterilizing immunity. The use of HuMoNAbs may

be more appropriate to reach this goal and it was pro-

posed to use them in human clinical trials [161,162].

However, several of the first-generation antibodies (b12,

2F5 and 2G12) were found ineffective or only partly effect-

ive against non-B viruses, particularly toward a panel of

clade C Env-pseudotyped viruses derived from primary

isolates of South African infected children and conse-

quently did not seem to be relevant to prevent MTCT in

populations where non-B viruses predominate [163]. In

contrast, the second-generation of broadly HuMoNAbs

directed against quaternary epitopes (PG9, PG16), the

CD4bs epitopes (VRC01, NIH45-46G54W) and V3 glycan-

dependent epitopes (PGT121, PGT128) were recently

found to be able to neutralize most of HIV-1 non-B vari-

ants transmitted through breastfeeding [89,164-166].

Similarly, by comparing functional properties of CRF01-

AE variants transmitted perinatally to infants with those

of their chronically infected mothers, we recently found

that all the transmitted variants were highly sensitive to

both PG9 and PG16, significantly more sensitive than the

maternal variants [95]. Together, these data would suggest

that this new generation of HuMoNAbs could be efficient

in passive immunization strategies. HIV prevention trials

in African breastfed infants using the antibody HuMoNAb

VRC01 are currently considered [167].

Conclusions

There are strong evidences for a selective advantage of

the HIV-1 variants that are transmitted from the mother

to the infant in the presence of maternal HIV-1-specific

antibodies. An association between presence or titers of

NAbs toward different HIV-1 strains and a lower rate of

mother-to-child transmission has been found in several

studies, suggesting that some NAbs could contribute to

protection toward neonatal infection. Together, these data

suggest that some neutralizing specificities might be pro-

tective and, in case of transmission, that the transmitted

variants escape these specificities. Dissecting the antibody

specificities that mediate protection toward MTCT of

HIV-1 could provide important clues for identification of

correlates of protection that would be useful for vaccine

development. Experiments of passive immunization in

newborn macaques have shown that first-generation

HuMoNAbs can fully protect against SHIV infection, pro-

viding additional proof that NAbs can inhibit MTCT. The

recent identification of highly potent second-generation

HuMoNAbs provides a new opportunity to evaluate the ef-

ficacy of passive immunization to prevent mother-to-child

transmission of HIV-1.
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