23 research outputs found

    Trophic interactions in Zostera marina beds along the Swedish coast

    No full text
    We compared eelgrass Zostera marina communities in 3 regions in Sweden believed to be affected by eutrophication and overfishing, to determine whether bottom-up or top-down processes control the biomass of epiphytic macroalgae and grazers. Nitrogen and carbon isotope signatures were analyzed to explore the food webs and to identify the grazing species feeding on filamentous algae and/or eelgrass. Mixing model (IsoSource version 1.3.1) analysis of the isotope signatures indicated that the amphipods Gammarus locusta and Microdeutopus gryllotalpa fed primarily on filamentous algae and that only 2 small gastropod species consumed eelgrass. Moreover, the grass shrimp Palaemon elegans and F adspersus were ca. 1 trophic level above amphipods and algae, but according to the mixing model played different trophic roles in the different areas. The highest biomass of filamentous algae was found in the west coast beds housing grazers with the lowest biomass and mean size (predominantly G. locusta and M. gryllotalpa, 0.5 to 3 mm). In contrast, the Baltic Sea beds had low algal biomass, but the grazers (mostly G. locusta and Idotea baltica) had higher biomass and were significantly larger (mean size ca. 10 mm). An overall negative correlation was found between grazer biomass and biomass of filamentous algae. The significantly smaller grazers and absence of isopod grazers on the west coast may be due to substantial consumption by small predatory fish. This supports the suggestions that, in Swedish eelgrass beds, grazers are top-down controlled, and overexploitation. of large predators and eutrophication play an important role in the recent increases in algal biomass

    Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus

    No full text
    Rising atmospheric carbon dioxide concentration is causing global warming, which affects oceans by elevating water temperature and reducing pH. Crustaceans have been considered tolerant to ocean acidification because of their retained capacity to calcify during subnormal pH. However, we report here that significant immune suppression of the Norway lobster, Nephrops norvegicus, occurs after a 4-month exposure to ocean acidification (OA) at a level predicted for the year 2100 (hypercapnic seawater with a pH lowered by 0.4 units). Experiments carried out at different temperatures (5, 10, 12, 14, 16, and 18 °C) demonstrated that the temperature within this range alone did not affect lobster immune responses. In the OA-treatment, hemocyte numbers were reduced by almost 50% and the phagocytic capacity of the remaining hemocytes was inhibited by 60%. The reduction in hemocyte numbers was not due to increased apoptosis in hematopoetic tissue. Cellular responses to stress were investigated through evaluating advanced glycation end products (AGE) and lipid oxidation in lobster hepatopancreata, and OA-treatment was shown to significantly increase AGEs', indicating stress-induced protein alterations. Furthermore, the extracellular pH of lobster hemolymph was reduced by approximately 0.2 units in the OA-treatment group, indicating either limited pH compensation or buffering capacity. The negative effects of OA-treatment on the nephropidae immune response and tissue homeostasis were more pronounced at higher temperatures (12–18 °C versus 5 °C), which may potentially affect disease severity and spread. Our results signify that ocean acidification may have adverse effects on the physiology of lobsters, which previously had been overlooked in studies of basic parameters such as lobster growth or calcification

    Seawater carbonate chemistry and host–pathogen interactions: blue mussels, Mytilus edulis, encountering Vibrio tubiashii

    No full text
    Ocean acidification (OA) can shift the ecological balance between interacting organisms. In this study, we have used a model-system to illustrate the interaction between a calcifying host-organism, the blue mussel Mytilus edulis, and a common bivalve bacterial-pathogen, Vibrio tubiashii, with organisms being exposed to a level of acidification projected to occur by the end of the 21st century. OA exposures of the mussels were carried out in relative long-term (4 months) and short-term (4 days) experiments. We found no effect of OA on the culturability of V. tubiashii, in broth or in seawater. OA inhibited mussel shell growth and impaired crystalline shell structures but did not appear to affect mussel immune parameters (i.e hemocyte counts and phagocytotic capacity). Despite no evident impact on host immunity or growth and virulence of the pathogen, V. tubiashii was clearly more successful in infecting mussels exposed to long-term OA compared to those maintained under ambient conditions. Moreover, OA exposed V. tubiashii increased their viability when exposed to hemocytes of OA treated mussel. Our findings suggest that even though host-organisms may have the capacity to cope with periods of OA, these conditions may alter the out-come of host-pathogen interactions, favoring the success of the latter

    Using ocean quahog (Arctica islandica) shells to reconstruct palaeoenvironment in A-resund, Kattegat and Skagerrak, Sweden

    No full text
    Shells of Arctica islandica collected between 1884 and 2004 from A-resund, Kattegat and Skagerrak (Swedish West Coast) were used to monitor local climate variations and the influence of human activities on the local environment. For this purpose, we analysed the growth, structure and chemical composition of these shells and compared them with shells collected from Kiel Bay, Norway and Iceland. The growth rate of the studied shells registers an NAO periodicity of ca 8 years. However, the observed signal is weak because of other environmental interferences that are either of natural or anthropogenic origin. For example, the oxygen isotope ratios show temperature fluctuation, but also the influx of low salinity water. Higher contents of S, N, Cu, Zn, As, Cd and P in shell portions formed during the last century are related to human activities such as mining and industrial development. Our study indicates that in order to use Arctica shells as archives of climate change it is necessary to study the full range of environmental data that is recorded in the shells by using a multi element and isotope approach in combination with different analytical techniques including investigation of growth rates and shell structure

    Using ocean quahog ( Arctica islandica ) shells to reconstruct palaeoenvironment in Ă–resund, Kattegat and Skagerrak, Sweden

    No full text
    Shells of Arctica islandica collected between 1884 and 2004 from A-resund, Kattegat and Skagerrak (Swedish West Coast) were used to monitor local climate variations and the influence of human activities on the local environment. For this purpose, we analysed the growth, structure and chemical composition of these shells and compared them with shells collected from Kiel Bay, Norway and Iceland. The growth rate of the studied shells registers an NAO periodicity of ca 8 years. However, the observed signal is weak because of other environmental interferences that are either of natural or anthropogenic origin. For example, the oxygen isotope ratios show temperature fluctuation, but also the influx of low salinity water. Higher contents of S, N, Cu, Zn, As, Cd and P in shell portions formed during the last century are related to human activities such as mining and industrial development. Our study indicates that in order to use Arctica shells as archives of climate change it is necessary to study the full range of environmental data that is recorded in the shells by using a multi element and isotope approach in combination with different analytical techniques including investigation of growth rates and shell structure

    Alteration of host-pathogen interactions in the wake of climate change – Increasing risk for shellfish associated infections?

    No full text
    corecore