176 research outputs found

    Interactive voice response - an automated follow-up technique for adolescents discharged from acute psychiatric inpatient care : a randomised controlled trial

    Get PDF
    Follow-up methods must be easy for young people to handle. We examine Interactive Voice Response (IVR) as a method for collecting self-reported data. Sixty inpatients were recruited from a child and adolescent psychiatric emergency unit in Malmö, Sweden and called every second (N = 30) or every fourth (N = 30) day from discharge until first visit in outpatient care. A pre-recorded voice asked them to evaluate their current mood using their mobile phones. Average response rate was 91%, and 71% had a 100% response rate. Gender, age and length of inpatient treatment did not affect response rate, nor did randomisation. Boys estimated their current mood on average as 3.52 units higher than girls, CI = (2.65, 4.48). Automated IVR is a feasible method of collecting follow-up data among adolescents discharged from a psychiatric emergency unit

    The genetics of gaits in Icelandic horses goes beyond DMRT3, with RELN and STAU2 identified as two new candidate genes

    Get PDF
    BackgroundIn domesticated animals, many important traits are complex and regulated by a large number of genes, genetic interactions, and environmental influences. The ability of Icelandic horses to perform the gait ‘pace’ is largely influenced by a single mutation in the DMRT3 gene, but genetic modifiers likely exist. The aim of this study was to identify novel genetic factors that influence pacing ability and quality of the gait through a genome-wide association study (GWAS) and correlate new findings to previously identified quantitative trait loci (QTL) and mutations.ResultsThree hundred and seventy-two Icelandic horses were genotyped with the 670 K+ Axiom Equine Genotyping Array, of which 362 had gait scores from breeding field tests. A GWAS revealed several SNPs on Equus caballus chromosomes (ECA) 4, 9, and 20 that were associated (p ConclusionsOur findings provide valuable information about the genetic architecture of pace beyond the contribution of the DMRT3 gene and indicate genetic interactions that contribute to the complexity of this trait. Further investigation is needed to fully understand the underlying genetic factors and interactions

    Tick-transmitted co-infections among erythema migrans patients in a general practice setting in Norway:a clinical and laboratory follow-up study

    Get PDF
    Background Erythema migrans (EM) is the most common manifestation of Lyme borreliosis. Here, we examined EM patients in Norwegian general practice to find the proportion exposed to tick-transmitted microorganisms other than Borrelia, and the impact of co-infection on the clinical manifestations and disease duration. Methods Skin biopsies from 139/188 EM patients were analyzed using PCR for Neoehrlichia mikurensis, Rickettsia spp., Anaplasma phagocytophilum and Babesia spp. Follow-up sera from 135/188 patients were analyzed for spotted fever group (SFG) Rickettsia, A. phagocytophilum and Babesia microti antibodies, and tested with PCR if positive. Day 0 sera from patients with fever (8/188) or EM duration of ≥ 21 days (69/188) were analyzed, using PCR, for A. phagocytophilum, Rickettsia spp., Babesia spp. and N. mikurensis. Day 14 sera were tested for TBEV IgG. Results We detected no microorganisms in the skin biopsies nor in the sera of patients with fever or prolonged EM duration. Serological signs of exposure against SFG Rickettsia and A. phagocytophilum were detected in 11/135 and 8/135, respectively. Three patients exhibited both SFG Rickettsia and A. phagocytophilum antibodies, albeit negative PCR. No antibodies were detected against B. microti. 2/187 had TBEV antibodies without prior immunization. There was no significant increase in clinical symptoms or disease duration in patients with possible co-infection. Conclusions Co-infection with N. mikurensis, A. phagocytophilum, SFG Rickettsia, Babesia spp. and TBEV is uncommon in Norwegian EM patients. Despite detecting antibodies against SFG Rickettsia and A. phagocytophilum in some patients, no clinical implications could be demonstrated

    Altered expression of autoimmune regulator in infant down syndrome thymus, a possible contributor to an autoimmune phenotype.

    Get PDF
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageDown syndrome (DS), caused by trisomy of chromosome 21, is associated with immunological dysfunctions such as increased frequency of infections and autoimmune diseases. Patients with DS share clinical features, such as autoimmune manifestations and specific autoantibodies, with patients affected by autoimmune polyendocrine syndrome type 1. Autoimmune polyendocrine syndrome type 1 is caused by mutations in the autoimmune regulator (AIRE) gene, located on chromosome 21, which regulates the expression of tissue-restricted Ags (TRAs) in thymic epithelial cells. We investigated the expression of AIRE and TRAs in DS and control thymic tissue using quantitative PCR. AIRE mRNA levels were elevated in thymic tissue from DS patients, and trends toward increased expression of the AIRE-controlled genes INSULIN and CHRNA1 were found. Immunohistochemical stainings showed altered cell composition and architecture of the thymic medulla in DS individuals with increased frequencies of AIRE-positive medullary epithelial cells and CD11c-positive dendritic cells as well as enlarged Hassall's corpuscles. In addition, we evaluated the proteomic profile of thymic exosomes in DS individuals and controls. DS exosomes carried a broader protein pool and also a larger pool of unique TRAs compared with control exosomes. In conclusion, the increased AIRE gene dose in DS could contribute to an autoimmune phenotype through multiple AIRE-mediated effects on homeostasis and function of thymic epithelial cells that affect thymic selection processes.Swedish Research Council 80409601 Marianne and Marcus Wallenberg Foundation Region Vastra Gotaland ALFGBG-771712 Arbetsmarknadens Forsakringsaktiebolag 100258 IngaBritt and Arne Lundbergs Research Foundation AnnMari and Per Ahlqvists Foundation Gothenburg Medical Society Wilhelm and Martina Lundgrens Research Foundatio

    Androgen Receptors in Epithelial Cells Regulate Thymopoiesis and Recent Thymic Emigrants in Male Mice

    Get PDF
    Androgens have profound effects on T cell homeostasis, including regulation of thymic T lymphopoiesis (thymopoiesis) and production of recent thymic emigrants (RTEs), i. e., immature T cells that derive from the thymus and continue their maturation to mature naive T cells in secondary lymphoid organs. Here we investigated the androgen target cell for effects on thymopoiesis and RTEs in spleen and lymph nodes. Male mice with a general androgen receptor knockout (G-ARKO), T cell-specific (T-ARKO), or epithelial cell-specific (E-ARKO) knockout were examined. G-ARKO mice showed increased thymus weight and increased numbers of thymic T cell progenitors. These effects were not T cell-intrinsic, since T-ARKO mice displayed unaltered thymus weight and thymopoiesis. In line with a role for thymic epithelial cells (TECs), E-ARKO mice showed increased thymus weight and numbers of thymic T cell progenitors. Further, E-ARKO mice had more CD4(+)and CD8(+)T cells in spleen and an increased frequency of RTEs among T cells in spleen and lymph nodes. Depletion of the androgen receptor in epithelial cells was also associated with a small shift in the relative number of cortical (reduced) and medullary (increased) TECs and increased CCL25 staining in the thymic medulla, similar to previous observations in castrated mice. In conclusion, we demonstrate that the thymic epithelium is a target compartment for androgen-mediated regulation of thymopoiesis and consequently the generation of RTEs

    Normal neonatal TREC and KREC levels in early onset juvenile idiopathic arthritis

    Get PDF
    Objective: Dysregulated central tolerance predisposes to autoimmune diseases. Reduced thymic output as well as compromised central B cell tolerance checkpoints have been proposed in the pathogenesis of juvenile idiopathic arthritis (JIA). The aim of this study was to investigate neonatal levels of T-cell receptor excision circles (TRECs) and kappa-deleting element excision circles (KRECs), as markers of T- and B-cell output at birth, in patients with early onset JIA. Methods: TRECs and KRECs were quantitated by multiplex qPCR from dried blood spots (DBS), collected 2–5 days after birth, in 156 children with early onset JIA and in 312 matched controls. Results: When analysed from neonatal dried blood spots, the median TREC level was 78 (IQR 55–113) in JIA cases and 88 (IQR 57–117) copies/well in controls. The median KREC level was 51 (IQR 35–69) and 53 (IQR 35–74) copies/well, in JIA cases and controls, respectively. Stratification by sex and age at disease onset did not reveal any difference in the levels of TRECs and KRECs. Conclusion: T- and B-cell output at birth, as measured by TREC and KREC levels in neonatal dried blood spots, does not differ in children with early onset JIA compared to controls

    Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

    Get PDF
    Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85610 x 10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84 x 10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at similar to 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults

    Using an Inbred Horse Breed in a High Density Genome-Wide Scan for Genetic Risk Factors of Insect Bite Hypersensitivity (IBH)

    Get PDF
    While susceptibility to hypersensitive reactions is a common problem amongst humans and animals alike, the population structure of certain animal species and breeds provides a more advantageous route to better understanding the biology underpinning these conditions. The current study uses Exmoor ponies, a highly inbred breed of horse known to frequently suffer from insect bite hypersensitivity, to identify genomic regions associated with a type I and type IV hypersensitive reaction. A total of 110 cases and 170 controls were genotyped on the 670K Axiom Equine Genotyping Array. Quality control resulted in 452,457 SNPs and 268 individuals being tested for association. Genome-wide association analyses were performed using the GenABEL package in R and resulted in the identification of two regions of interest on Chromosome 8. The first region contained the most significant SNP identified, which was located in an intron of the DCC netrin 1 receptor gene. The second region identified contained multiple top SNPs and encompassed the PIGN, KIAA1468, TNFRSF11A, ZCCHC2, and PHLPP1 genes. Although additional studies will be needed to validate the importance of these regions in horses and the relevance of these regions in other species, the knowledge gained from the current study has the potential to be a step forward in unraveling the complex nature of hypersensitive reactions

    震災豫防調査會報告第十八號正誤

    Get PDF
    <p>Insect bite hypersensitivity (IBH), which is a cutaneous allergic reaction to antigens from Culicoides spp., is the most prevalent skin disorder in horses. Misdiagnosis is possible, as IBH is usually diagnosed based on clinical signs. Our study is the first to employ IgE levels against several recombinant Culicoides spp. allergens as an objective, independent, and quantitative phenotype to improve the power to detect genetic variants that underlie IBH. Genotypes of 200 Shetland ponies, 127 Icelandic horses, and 223 Belgian Warmblood horses were analyzed while using a mixed model approach. No single-nucleotide polymorphism (SNP) passed the Bonferroni corrected significance threshold, but several regions were identified within and across breeds, which confirmed previously identified regions of interest and, in addition, identifying new regions of interest. Allergen-specific IgE levels are a continuous and objective phenotype that allow for more powerful analyses when compared to a case-control set-up, as more significant associations were obtained. However, the use of a higher density array seems necessary to fully employ the use of IgE levels as a phenotype. While these results still require validation in a large independent dataset, the use of allergen-specific IgE levels showed value as an objective and continuous phenotype that can deepen our understanding of the biology underlying IBH.</p

    Long-Term Follow-Up of Newborns with 22q11 Deletion Syndrome and Low TRECs.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadBackground: Population-based neonatal screening using T-cell receptor excision circles (TRECs) identifies infants with profound T lymphopenia, as seen in cases of severe combined immunodeficiency, and in a subgroup of infants with 22q11 deletion syndrome (22q11DS). Purpose: To investigate the long-term prognostic value of low levels of TRECs in newborns with 22q11DS. Methods: Subjects with 22q11DS and low TRECs at birth (22q11Low, N=10), matched subjects with 22q11DS and normal TRECs (22q11Normal, N=10), and matched healthy controls (HC, N=10) were identified. At follow-up (median age 16 years), clinical and immunological characterizations, covering lymphocyte subsets, immunoglobulins, TRECs, T-cell receptor repertoires, and relative telomere length (RTL) measurements were performed. Results: At follow-up, the 22q11Low group had lower numbers of naïve T-helper cells, naïve T-regulatory cells, naïve cytotoxic T cells, and persistently lower TRECs compared to healthy controls. Receptor repertoires showed skewed V-gene usage for naïve T-helper cells, whereas for naïve cytotoxic T cells, shorter RTL and a trend towards higher clonality were found. Multivariate discriminant analysis revealed a clear distinction between the three groups and a skewing towards Th17 differentiation of T-helper cells, particularly in the 22q11Low individuals. Perturbations of B-cell subsets were found in both the 22q11Low and 22q11Normal group compared to the HC group, with larger proportions of naïve B cells and lower levels of memory B cells, including switched memory B cells. Conclusions: This long-term follow-up study shows that 22q11Low individuals have persistent immunologic aberrations and increased risk for immune dysregulation, indicating the necessity of lifelong monitoring. Clinical implications: This study elucidates the natural history of childhood immune function in newborns with 22q11DS and low TRECs, which may facilitate the development of programs for long-term monitoring and therapeutic choices. Keywords: 22q11.2 deletion syndrome; DiGeorge syndrome; T lymphopenia; TREC; long-term outcome; newborn screening; severe combined immunodeficiency.University of Gothenburg Regional research grant Region Halland Swedish Research Council European Commission Queen Silvia Jubilee Foundation Swedish Primary Immunodeficiency Organization Sparbanken Foundation Varberg Frimurare Barnhusdirektionen Foundation Gothenburg Medical Society Medical Faculty at Umea University Cancer Research Foundation in Northern Sweden Swedish government county councils, the ALF-agreement Umea University Vasterbottens County Counci
    corecore