623 research outputs found
Genomic Evidence for Formate Metabolism by as the Key to Unlocking Deep Carbon in Lost City Microbial Ecosystems
The Lost City hydrothermal field on the Mid-Atlantic Ridge supports dense microbial life on the lofty calcium carbonate chimney structures. The vent field is fueled by chemical reactions between the ultramafic rock under the chimneys and ambient seawater. These serpentinization reactions provide reducing power (as hydrogen gas) and organic compounds that can serve as microbial food; the most abundant of these are methane and formate. Previous studies have characterized the interior of the chimneys as a single-species biofilm inhabited by the Lost City , but they also indicated that this methanogen is unable to metabolize formate. The new metagenomic results presented here indicate that carbon cycling in these Lost City chimney biofilms could depend on the metabolism of formate by populations. Additionally, we present evidence for metabolically diverse, formate-utilizing populations and new genomic and phylogenetic insights into the unique Lost City Primitive forms of life may have originated around hydrothermal vents at the bottom of the ancient ocean. The Lost City hydrothermal vent field, fueled by just rock and water, provides an analog for not only primitive ecosystems but also potential extraterrestrial rock-powered ecosystems. The microscopic life covering the towering chimney structures at the Lost City has been previously documented, yet little is known about the carbon cycling in this ecosystem. These results provide a better understanding of how carbon from the deep subsurface can fuel rich microbial ecosystems on the seafloor
Isotopic (δ13C, Δ14C) Analysis of Organic Acids in Marine Samples Using Wet Chemical Oxidation
We present a method for the isolation and off-line isotope analysis of formate and acetate in marine samples. Organic acids are separated by high performance liquid chromatography and collected in glass Exetainer® screw-capped vials that have been prespiked with an oxidant and flushed with helium. The vials are subsequently heated to convert the organic compounds to CO2 for radiocarbon and δ13C analysis. Small aliquots are sampled for measurement of δ13C by isotope ratio mass spectrometry, whereas the majority of the CO2 is saved for radiocarbon analysis by accelerator mass spectrometry using a gas ion source. Accurate δ13C and radiocarbon values were obtained for formate and acetate standards spiked into deep seawater and saline Milli-Q water at concentrations of 25 to 1000 µM C. The process blank associated with the isolation of formate for radiocarbon analysis was ~1.5 µg C and stable over time. Accurate results could be obtained for marine samples with only 25 µM formate. The radiocarbon analysis of acetate showed significantly higher and more variable extraneous carbon contributions, particularly for samples spiked into seawater. Potential improvements that may make the method appropriate for the radiocarbon analysis of acetate in seawater are discussed. The blanks associated with the wet chemical oxidation were assessed independently and found to be small and consistent (\u3c0.3 µg C), potentially making this approach feasible for a broader set of compounds separated by HPLC for radiocarbon analysis
Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1
During the course of many chronic viral infections, the antiviral T cell response becomes attenuated through a process that is regulated in part by the host. While elevated expression of the immunosuppressive cytokine IL-10 is involved in the suppression of viral-specific T cell responses, the relevant cellular sources of IL-10, as well as the pathways responsible for IL-10 induction, remain unclear. In this study, we traced IL-10 production over the course of chronic lymphocytic choriomeningitis virus (LCMV) infection in an IL-10 reporter mouse line. Using this model, we demonstrated that virus-specific T cells with reduced inflammatory function, particularly Th1 cells, display elevated and sustained IL-10 expression during chronic LCMV infection. Furthermore, ablation of IL-10 from the T cell compartment partially restored T cell function and reduced viral loads in LCMV-infected animals. We found that viral persistence is needed for sustained IL-10 production by Th1 cells and that the transcription factor BLIMP-1 is required for IL-10 expression by Th1 cells. Restimulation of Th1 cells from LCMV-infected mice promoted BLIMP-1 and subsequent IL-10 expression, suggesting that constant antigen exposure likely induces the BLIMP-1/IL-10 pathway during chronic viral infection. Together, these data indicate that effector T cells self-limit their responsiveness during persistent viral infection via an IL-10-dependent negative feedback loop.This work was supported by an Australian NHMRC Overseas Biomedical Postdoctoral Fellowship (to I.A. Parish); a Yale School of Medicine Brown-Coxe Postdoctoral Fellowship (to I.A. Parish); the Alexander von Humboldt Foundation (SKA2010, to P.A. Lang); a CIHR grant (to P.S. Ohashi); and by the Howard Hughes Medical Institute and NIH grant RO1AI074699 (to S.M. Kaech). P.S. Ohashi holds a Canada Research Chair in Autoimmunity and Tumor immunity
Recommended from our members
Candidate gene analysis of femoral neck trabecular and cortical volumetric bone mineral density in older men.
In contrast to conventional dual-energy X-ray absorptiometry, quantitative computed tomography separately measures trabecular and cortical volumetric bone mineral density (vBMD). Little is known about the genetic variants associated with trabecular and cortical vBMD in humans, although both may be important for determining bone strength and osteoporotic risk. In the current analysis, we tested the hypothesis that there are genetic variants associated with trabecular and cortical vBMD at the femoral neck by genotyping 4608 tagging and potentially functional single-nucleotide polymorphisms (SNPs) in 383 bone metabolism candidate genes in 822 Caucasian men aged 65 years or older from the Osteoporotic Fractures in Men Study (MrOS). Promising SNP associations then were tested for replication in an additional 1155 men from the same study. We identified SNPs in five genes (IFNAR2, NFATC1, SMAD1, HOXA, and KLF10) that were robustly associated with cortical vBMD and SNPs in nine genes (APC, ATF2, BMP3, BMP7, FGF18, FLT1, TGFB3, THRB, and RUNX1) that were robustly associated with trabecular vBMD. There was no overlap between genes associated with cortical vBMD and trabecular vBMD. These findings identify novel genetic variants for cortical and trabecular vBMD and raise the possibility that some genetic loci may be unique for each bone compartment
Particulate and Dissolved Organic Matter in Stormwater Runoff Influences Oxygen Demand in Urbanized Headwater Catchments
Increasing inputs of organic matter (OM) are driving declining dissolved oxygen (DO) concentrations in coastal ecosystems worldwide. The quantity, source, and composition of OM transported to coastal ecosystems via stormwater runoff have been altered by land use changes associated with urbanization and subsequent hydrologic flows that accompany urban stormwater management. To elucidate the role of stormwater in the decline of coastal DO, rain event sampling of biochemical oxygen demand (BOD) in samples collected from the outfall of stormwater ponds and wetlands, as well as samples of largely untreated runoff carried by stormwater ditches, was conducted across a range of urban and suburban development densities. Sampling also included measurements of particulate and dissolved carbon and nitrogen, carbon and nitrogen stable isotopes, and chlorophyll-a. Results suggest stormwater may be a significant source of labile OM to receiving waters, especially during the first flush of runoff, even though BOD concentrations vary both among and within sites in response to rain events. BOD variability was best predicted by particulate OM (POM) and chlorophyll-a, rather than the larger pool of dissolved OM. These findings demonstrate the importance of managing episodic stormwater discharge, especially POM, from urbanized areas to mitigate DO impairment in larger downstream systems
Clinical Determinants and Prognostic Implications of Renin and Aldosterone in Patients with Symptomatic Heart Failure
Aims Activation of the renin-angiotensin-aldosterone system plays an important role in the pathophysiology of heart failure (HF) and has been associated with poor prognosis. There are limited data on the associations of renin and aldosterone levels with clinical profiles, treatment response, and study outcomes in patients with HF. Methods and results We analysed 2,039 patients with available baseline renin and aldosterone levels in BIOSTAT-CHF (a systems BIOlogy study to Tailored Treatment in Chronic Heart Failure). The primary outcome was the composite of all-cause mortality or HF hospitalization. We also investigated changes in renin and aldosterone levels after administration of mineralocorticoid receptor antagonists (MRAs) in a subset of the EPHESUS trial and in an acute HF cohort (PORTO). In BIOSTAT-CHF study, median renin and aldosterone levels were 85.3 (percentile(25-75) = 28-247) mu IU/mL and 9.4 (percentile(25-75) = 4.4-19.8) ng/dL, respectively. Prior HF admission, lower blood pressure, sodium, poorer renal function, and MRA treatment were associated with higher renin and aldosterone. Higher renin was associated with an increased rate of the primary outcome [highest vs. lowest renin tertile: adjusted-HR (95% CI) = 1.47 (1.16-1.86), P = 0.002], whereas higher aldosterone was not [highest vs. lowest aldosterone tertile: adjusted-HR (95% CI) = 1.16 (0.93-1.44), P = 0.19]. Renin and/or aldosterone did not improve the BIOSTAT-CHF prognostic models. The rise in aldosterone with the use of MRAs was observed in EPHESUS and PORTO studies. Conclusions Circulating levels of renin and aldosterone were associated with both the disease severity and use of MRAs. By reflecting both the disease and its treatments, the prognostic discrimination of these biomarkers was poor. Our data suggest that the "point" measurement of renin and aldosterone in HF is of limited clinical utility
Central human B cell tolerance manifests with a distinctive cell phenotype and is enforced via CXCR4 signaling in hu-mice
Central B cell tolerance, the process restricting the development of many newly generated autoreactive B cells, has been intensely investigated in mouse cells while studies in humans have been hampered by the inability to phenotypically distinguish autoreactive and nonautoreactive immature B cell clones and the difficulty in accessing fresh human bone marrow samples. Using a human immune system mouse model in which all human Igκ+ B cells undergo central tolerance, we discovered that human autoreactive immature B cells exhibit a distinctive phenotype that includes lower activation of ERK and differential expression of CD69, CD81, CXCR4, and other glycoproteins. Human B cells exhibiting these characteristics were observed in fresh human bone marrow tissue biopsy specimens, although differences in marker expression were smaller than in the humanized mouse model. Furthermore, the expression of these markers was slightly altered in autoreactive B cells of humanized mice engrafted with some human immune systems genetically predisposed to autoimmunity. Finally, by treating mice and human immune system mice with a pharmacologic antagonist, we show that signaling by CXCR4 is necessary to prevent both human and mouse autoreactive B cell clones from egressing the bone marrow, indicating that CXCR4 functionally contributes to central B cell tolerance.This work was supported by the NIH (Grants AI124474 and AI131639 to R.P. and Grant AI136534 to R.M.T.). It was also supported in part by NIH National Center for Advancing Translational Sciences Colorado Clinical and Translational Science Awards Grant UL1 TR002535. The contents are the authors’sole responsibility anddo not necessarily represent official NIH views.S
Sox2 Is Required for Maintenance and Differentiation of Bronchiolar Clara, Ciliated, and Goblet Cells
The bronchioles of the murine lung are lined by a simple columnar epithelium composed of ciliated, Clara, and goblet cells that together mediate barrier function, mucociliary clearance and innate host defense, vital for pulmonary homeostasis. In the present work, we demonstrate that expression of Sox2 in Clara cells is required for the differentiation of ciliated, Clara, and goblet cells that line the bronchioles of the postnatal lung. The gene was selectively deleted in Clara cells utilizing Scgb1a1-Cre, causing the progressive loss of Sox2 in the bronchioles during perinatal and postnatal development. The rate of bronchiolar cell proliferation was decreased and associated with the formation of an undifferentiated, cuboidal-squamous epithelium lacking the expression of markers of Clara cells (Scgb1a1), ciliated cells (FoxJ1 and α-tubulin), and goblet cells (Spdef and Muc5AC). By adulthood, bronchiolar cell numbers were decreased and Sox2 was absent in extensive regions of the bronchiolar epithelium, at which time residual Sox2 expression was primarily restricted to selective niches of CGRP staining neuroepithelial cells. Allergen-induced goblet cell differentiation and mucus production was absent in the respiratory epithelium lacking Sox2. In vitro, Sox2 activated promoter-luciferase reporter constructs for differentiation markers characteristic of Clara, ciliated, and goblet cells, Scgb1a1, FoxJ1, and Agr2, respectively. Sox2 physically interacted with Smad3 and inhibited TGF-β1/Smad3-mediated transcriptional activity in vitro, a pathway that negatively regulates proliferation. Sox2 is required for proliferation and differentiation of Clara cells that serve as the progenitor cells from which Clara, ciliated, and goblet cells are derived
Serpentinization: Connecting geochemistry, ancient metabolism and industrial hydrogenation
Rock–water–carbon interactions germane to serpentinization in hydrothermal vents have occurred for over 4 billion years, ever since there was liquid water on Earth. Serpentinization converts iron(II) containing minerals and water to magnetite (Fe3O4) plus H2. The hydrogen can generate native metals such as awaruite (Ni3Fe), a common serpentinization product. Awaruite catalyzes the synthesis of methane from H2 and CO2 under hydrothermal conditions. Native iron and nickel catalyze the synthesis of formate, methanol, acetate, and pyruvate—intermediates of the acetyl-CoA pathway, the most ancient pathway of CO2 fixation. Carbon monoxide dehydrogenase (CODH) is central to the pathway and employs Ni0 in its catalytic mechanism. CODH has been conserved during 4 billion years of evolution as a relic of the natural CO2-reducing catalyst at the onset of biochemistry. The carbide-containing active site of nitrogenase—the only enzyme on Earth that reduces N2—is probably also a relic, a biological reconstruction of the naturally occurring inorganic catalyst that generated primordial organic nitrogen. Serpentinization generates Fe3O4 and H2, the catalyst and reductant for industrial CO2 hydrogenation and for N2 reduction via the Haber–Bosch process. In both industrial processes, an Fe3O4 catalyst is matured via H2-dependent reduction to generate Fe5C2 and Fe2N respectively. Whether serpentinization entails similar catalyst maturation is not known. We suggest that at the onset of life, essential reactions leading to reduced carbon and reduced nitrogen occurred with catalysts that were synthesized during the serpentinization process, connecting the chemistry of life and Earth to industrial chemistry in unexpected ways
- …