8 research outputs found

    Sensitivity Lower Bounds from Linear Dependencies

    Get PDF
    Recently, using the eigenvalue techniques, H. Huang proved that every subgraph of the hypercube of dimension n induced on more than half the vertices has maximum degree at least √ n. Combined with some earlier work, this completed a proof of the sensitivity conjecture. In this work we show how to derive a proof of Huang's result using only linear dependency and independence of vectors associated with the vertices of the hypercube. Our approach leads to several improvements of the result. In particular we prove that in any induced subgraph of H n with more than half the number of vertices, there are two vertices, one of odd parity and the other of even parity, each with at least n vertices at distance at most 2. As an application we show that for any Boolean function f , the polynomial degree of f is bounded above by s 0 (f)s 1 (f), a strictly stronger statement which implies the sensitivity conjecture

    Certificate Games

    Get PDF

    Certificate games

    Get PDF
    We introduce and study Certificate Game complexity, a measure of complexity based on the probability of winning a game where two players are given inputs with different function values and are asked to output ii such that xi≠yix_i\neq y_i (zero-communication setting). We give upper and lower bounds for private coin, public coin, shared entanglement and non-signaling strategies, and give some separations. We show that complexity in the public coin model is upper bounded by Randomized query and Certificate complexity. On the other hand, it is lower bounded by fractional and randomized certificate complexity, making it a good candidate to prove strong lower bounds on randomized query complexity. Complexity in the private coin model is bounded from below by zero-error randomized query complexity. The quantum measure highlights an interesting and surprising difference between classical and quantum query models. Whereas the public coin certificate game complexity is bounded from above by randomized query complexity, the quantum certificate game complexity can be quadratically larger than quantum query complexity. We use non-signaling, a notion from quantum information, to give a lower bound of nn on the quantum certificate game complexity of the OROR function, whose quantum query complexity is Θ(n)\Theta(\sqrt{n}), then go on to show that this ``non-signaling bottleneck'' applies to all functions with high sensitivity, block sensitivity or fractional block sensitivity. We consider the single-bit version of certificate games (inputs of the two players have Hamming distance 11). We prove that the single-bit version of certificate game complexity with shared randomness is equal to sensitivity up to constant factors, giving a new characterization of sensitivity. The single-bit version with private randomness is equal to λ2\lambda^2, where λ\lambda is the spectral sensitivity.Comment: 43 pages, 1 figure, ITCS202

    Les mesures complexes Ă  travers le prisme des jeux Ă  deux joueurs et des signatures de l'hypercube

    No full text
    Complexity measures of Boolean functions capture various aspects of the hardness of computing a function and their study is about finding connections between different complexity measures. In the first part of this thesis, we introduce and study Certificate Game complexity, a measure of complexity based on the probability of winning a game in which two players are given inputs with different function values and are asked to output some index i where their inputs differ, in a zero-communication setting. We give upper and lower bounds for private coin, public coin, shared entanglement and non-signaling strategies, and give some separations. We show that complexity in the public coin model is bounded above by Randomised query and Certificate complexities. On the other hand, it is bounded below by fractional certificate complexity, making it a good candidate to prove strong lower bounds on randomised query complexity. Complexity in the private coin model is bounded below by zero-error randomised query complexity. The quantum measure highlights an interesting and surprising difference between classical and quantum query models. While public coin certificate game complexity is bounded above by randomised query complexity, quantum certificate game complexity can be quadratically larger than quantum query complexity. We use non-signaling, a notion from quantum information, to give a lower bound of n on the quantum certificate game complexity of the OR function, whose quantum query complexity is Θ(√n) and then go on to show that this "non-signaling bottleneck" applies to all functions with high sensitivity, block sensitivity or fractional block sensitivity. We also consider the single-bit version of certificate games, where the inputs of the two players are restricted to having Hamming distance 1. We prove that the single-bit version of certificate game complexity with shared randomness is equal to sensitivity up to constant factors, thus giving a new characterization of sensitivity. On the other hand, the single-bit version of certificate game complexity with private randomness is equal to λ2, where λ is the spectral sensitivity. In the second part of this thesis, we revisit the celebrated proof of the sensitivity conjecture by Hao Huang. Using spectral techniques, Huang proved that every subgraph of the hypercube Hn of dimension n induced on more than half the vertices has maximum degree at least √n. Combined with earlier work, this completed a proof of the sensitivity conjecture. We show an alternate proof of Huang's result using only linear dependency of vectors associated with the vertices of the hypercube. Our approach helps gain insight on more structural properties of the induced subgraph in addition to the largest degree. In particular, we prove that in any induced subgraph of Hn with more than half the number of vertices, there are two vertices, one of odd parity and the other of even parity, each with at least n vertices at distance at most 2. As an application, we show that for any Boolean function f, the polynomial degree is bounded above by the product of 0-sensitivity and 1-sensitivity, s0(f)s1(f), a strictly stronger statement which implies Huang's theorem. We also obtain structural relations for induced subgraphs at distance 3. A key implement in Huang's proof was signed hypercubes with the property that every cycle of length 4 is assigned a negative sign. We take a detailed look at this signature and give a nearly optimal signature that uses the minimum number of negative edges while ensuring that every 4-cycle is negative. This problem turns out to be related to one of Erdös' problems on the largest 4-cycle free subgraph of the hypercube.Les mesures de complexitĂ© des fonctions boolĂ©ennes capturent divers aspects de la difficultĂ© du calcul d'une fonction et leur Ă©tude consiste Ă  trouver des connexions entre diffĂ©rentes mesures de complexitĂ©. Dans la premiĂšre partie de cette thĂšse, nous introduisons et Ă©tudions la complexitĂ© de jeux de certificats, une mesure de complexitĂ© basĂ©e sur la probabilitĂ© de gagner un jeu dans lequel deux joueurs reçoivent des entrĂ©es avec des valeurs de fonctions diffĂ©rentes et doivent produire un indice i pour lequel leurs entrĂ©es diffĂšrent, sans communiquer. Nous donnons des bornes supĂ©rieures et infĂ©rieures pour les stratĂ©gies Ă  base de piĂšces privĂ©es, de piĂšces publiques, d'intrication partagĂ©e et de non-signalisation, et nous prouvons quelques rĂ©sultats de sĂ©parations. D'une part, nous montrons que la complexitĂ© dans le cas des piĂšces publiques est majorĂ©e par les complexitĂ©s de requĂȘte alĂ©atoire et de certificat. D'autre part, nous montrons qu'elle est minorĂ©e par la complexitĂ© fractionnelle de certificat, ce qui en fait un bon candidat pour trouver des bornes infĂ©rieures fortes sur la complexitĂ© de requĂȘte alĂ©atoire. La complexitĂ© dans le cas des piĂšces privĂ©es est minorĂ©e par la complexitĂ© de requĂȘte alĂ©atoire Ă  erreur nulle. Nous utilisons la non-signalisation, une notion d'information quantique, pour minorer par n la complexitĂ© de jeux de certificats quantiques de la fonction OR, dont la complexitĂ© de requĂȘte quantique est de Θ(√n), puis nous montrons que ce "goulot d'Ă©tranglement de non-signalisation" s'applique Ă  toutes les fonctions Ă  sensibilitĂ©, Ă  sensibilitĂ© de bloc ou Ă  sensibilitĂ© de bloc fractionnaire Ă©levĂ©e. Nous considĂ©rons Ă©galement la version mono-bit des jeux de certificats, oĂč les entrĂ©es des deux joueurs sont restreints Ă  une distance de Hamming de 1. Nous prouvons que la version mono-bit de la complexitĂ© de jeux de certificats avec alĂ©a partagĂ© est Ă©gale Ă  la sensibilitĂ© Ă  un facteur constant prĂšs, ce qui donne une nouvelle caractĂ©risation de la sensibilitĂ©. D'autre part, la version mono-bit de la complexitĂ© de jeux de certificats avec alĂ©a privĂ© est Ă©gale Ă  λ2, oĂč λ est la sensibilitĂ© spectrale. Dans la deuxiĂšme partie de cette thĂšse, nous revisitons la cĂ©lĂšbre preuve de la conjecture de la sensibilitĂ© par Hao Huang. En utilisant des techniques spectrales, Huang a prouvĂ© que tout sous-graphe de l'hypercube Hn de dimension n induit sur plus de la moitiĂ© des sommets a un degrĂ© maximal d'au moins √n. CombinĂ© avec des travaux antĂ©rieurs, ce rĂ©sultat a complĂ©tĂ© une preuve de la conjecture de la sensibilitĂ©. Nous en donnons une preuve alternative en utilisant seulement la dĂ©pendance linĂ©aire des vecteurs associĂ©s aux sommets de l'hypercube. Notre approche permet de mieux comprendre les propriĂ©tĂ©s structurelles du sous-graphe induit, en plus du plus grand degrĂ©. En particulier, nous prouvons que dans tout sous-graphe induit de Hn avec plus de la moitiĂ© du nombre de sommets, il existe deux sommets, l'un de paritĂ© impaire et l'autre de paritĂ© paire, chacun ayant au moins n sommets Ă  une distance au plus Ă©gale Ă  2. Comme application, nous montrons que pour toute fonction boolĂ©enne f, le degrĂ© polynomial est majorĂ© par le produit de la sensibilitĂ© 0 et de la sensibilitĂ© 1, s0(f)s1(f), une affirmation strictement plus forte qui implique le thĂ©orĂšme de Huang. Nous obtenons Ă©galement des relations structurelles pour les sous-graphes induits Ă  distance 3. Un ingrĂ©dient clĂ© de la preuve de Huang Ă©tait des hypercubes signĂ©s avec la propriĂ©tĂ© que chaque cycle de longueur 4 est affectĂ© d'un signe nĂ©gatif. Nous examinons en dĂ©tail cette signature et donnons une signature quasi-optimale qui utilise le nombre minimum de bords nĂ©gatifs tout en garantissant que chaque cycle de longueur 4 est nĂ©gatif. Ce problĂšme s'avĂšre ĂȘtre liĂ© Ă  l'un des problĂšmes d'Erdös sur le plus grand sous-graphe de l'hypercube exempt de 4-cycles

    Les mesures complexes Ă  travers le prisme des jeux Ă  deux joueurs et des signatures de l'hypercube

    No full text
    Les mesures de complexitĂ© des fonctions boolĂ©ennes capturent divers aspects de la difficultĂ© du calcul d'une fonction et leur Ă©tude consiste Ă  trouver des connexions entre diffĂ©rentes mesures de complexitĂ©. Dans la premiĂšre partie de cette thĂšse, nous introduisons et Ă©tudions la complexitĂ© de jeux de certificats, une mesure de complexitĂ© basĂ©e sur la probabilitĂ© de gagner un jeu dans lequel deux joueurs reçoivent des entrĂ©es avec des valeurs de fonctions diffĂ©rentes et doivent produire un indice i pour lequel leurs entrĂ©es diffĂšrent, sans communiquer. Nous donnons des bornes supĂ©rieures et infĂ©rieures pour les stratĂ©gies Ă  base de piĂšces privĂ©es, de piĂšces publiques, d'intrication partagĂ©e et de non-signalisation, et nous prouvons quelques rĂ©sultats de sĂ©parations. D'une part, nous montrons que la complexitĂ© dans le cas des piĂšces publiques est majorĂ©e par les complexitĂ©s de requĂȘte alĂ©atoire et de certificat. D'autre part, nous montrons qu'elle est minorĂ©e par la complexitĂ© fractionnelle de certificat, ce qui en fait un bon candidat pour trouver des bornes infĂ©rieures fortes sur la complexitĂ© de requĂȘte alĂ©atoire. La complexitĂ© dans le cas des piĂšces privĂ©es est minorĂ©e par la complexitĂ© de requĂȘte alĂ©atoire Ă  erreur nulle. Nous utilisons la non-signalisation, une notion d'information quantique, pour minorer par n la complexitĂ© de jeux de certificats quantiques de la fonction OR, dont la complexitĂ© de requĂȘte quantique est de Θ(√n), puis nous montrons que ce "goulot d'Ă©tranglement de non-signalisation" s'applique Ă  toutes les fonctions Ă  sensibilitĂ©, Ă  sensibilitĂ© de bloc ou Ă  sensibilitĂ© de bloc fractionnaire Ă©levĂ©e. Nous considĂ©rons Ă©galement la version mono-bit des jeux de certificats, oĂč les entrĂ©es des deux joueurs sont restreints Ă  une distance de Hamming de 1. Nous prouvons que la version mono-bit de la complexitĂ© de jeux de certificats avec alĂ©a partagĂ© est Ă©gale Ă  la sensibilitĂ© Ă  un facteur constant prĂšs, ce qui donne une nouvelle caractĂ©risation de la sensibilitĂ©. D'autre part, la version mono-bit de la complexitĂ© de jeux de certificats avec alĂ©a privĂ© est Ă©gale Ă  λ2, oĂč λ est la sensibilitĂ© spectrale. Dans la deuxiĂšme partie de cette thĂšse, nous revisitons la cĂ©lĂšbre preuve de la conjecture de la sensibilitĂ© par Hao Huang. En utilisant des techniques spectrales, Huang a prouvĂ© que tout sous-graphe de l'hypercube Hn de dimension n induit sur plus de la moitiĂ© des sommets a un degrĂ© maximal d'au moins √n. CombinĂ© avec des travaux antĂ©rieurs, ce rĂ©sultat a complĂ©tĂ© une preuve de la conjecture de la sensibilitĂ©. Nous en donnons une preuve alternative en utilisant seulement la dĂ©pendance linĂ©aire des vecteurs associĂ©s aux sommets de l'hypercube. Notre approche permet de mieux comprendre les propriĂ©tĂ©s structurelles du sous-graphe induit, en plus du plus grand degrĂ©. En particulier, nous prouvons que dans tout sous-graphe induit de Hn avec plus de la moitiĂ© du nombre de sommets, il existe deux sommets, l'un de paritĂ© impaire et l'autre de paritĂ© paire, chacun ayant au moins n sommets Ă  une distance au plus Ă©gale Ă  2. Comme application, nous montrons que pour toute fonction boolĂ©enne f, le degrĂ© polynomial est majorĂ© par le produit de la sensibilitĂ© 0 et de la sensibilitĂ© 1, s0(f)s1(f), une affirmation strictement plus forte qui implique le thĂ©orĂšme de Huang. Nous obtenons Ă©galement des relations structurelles pour les sous-graphes induits Ă  distance 3. Un ingrĂ©dient clĂ© de la preuve de Huang Ă©tait des hypercubes signĂ©s avec la propriĂ©tĂ© que chaque cycle de longueur 4 est affectĂ© d'un signe nĂ©gatif. Nous examinons en dĂ©tail cette signature et donnons une signature quasi-optimale qui utilise le nombre minimum de bords nĂ©gatifs tout en garantissant que chaque cycle de longueur 4 est nĂ©gatif. Ce problĂšme s'avĂšre ĂȘtre liĂ© Ă  l'un des problĂšmes d'Erdös sur le plus grand sous-graphe de l'hypercube exempt de 4-cycles.Complexity measures of Boolean functions capture various aspects of the hardness of computing a function and their study is about finding connections between different complexity measures. In the first part of this thesis, we introduce and study Certificate Game complexity, a measure of complexity based on the probability of winning a game in which two players are given inputs with different function values and are asked to output some index i where their inputs differ, in a zero-communication setting. We give upper and lower bounds for private coin, public coin, shared entanglement and non-signaling strategies, and give some separations. We show that complexity in the public coin model is bounded above by Randomised query and Certificate complexities. On the other hand, it is bounded below by fractional certificate complexity, making it a good candidate to prove strong lower bounds on randomised query complexity. Complexity in the private coin model is bounded below by zero-error randomised query complexity. The quantum measure highlights an interesting and surprising difference between classical and quantum query models. While public coin certificate game complexity is bounded above by randomised query complexity, quantum certificate game complexity can be quadratically larger than quantum query complexity. We use non-signaling, a notion from quantum information, to give a lower bound of n on the quantum certificate game complexity of the OR function, whose quantum query complexity is Θ(√n) and then go on to show that this "non-signaling bottleneck" applies to all functions with high sensitivity, block sensitivity or fractional block sensitivity. We also consider the single-bit version of certificate games, where the inputs of the two players are restricted to having Hamming distance 1. We prove that the single-bit version of certificate game complexity with shared randomness is equal to sensitivity up to constant factors, thus giving a new characterization of sensitivity. On the other hand, the single-bit version of certificate game complexity with private randomness is equal to λ2, where λ is the spectral sensitivity. In the second part of this thesis, we revisit the celebrated proof of the sensitivity conjecture by Hao Huang. Using spectral techniques, Huang proved that every subgraph of the hypercube Hn of dimension n induced on more than half the vertices has maximum degree at least √n. Combined with earlier work, this completed a proof of the sensitivity conjecture. We show an alternate proof of Huang's result using only linear dependency of vectors associated with the vertices of the hypercube. Our approach helps gain insight on more structural properties of the induced subgraph in addition to the largest degree. In particular, we prove that in any induced subgraph of Hn with more than half the number of vertices, there are two vertices, one of odd parity and the other of even parity, each with at least n vertices at distance at most 2. As an application, we show that for any Boolean function f, the polynomial degree is bounded above by the product of 0-sensitivity and 1-sensitivity, s0(f)s1(f), a strictly stronger statement which implies Huang's theorem. We also obtain structural relations for induced subgraphs at distance 3. A key implement in Huang's proof was signed hypercubes with the property that every cycle of length 4 is assigned a negative sign. We take a detailed look at this signature and give a nearly optimal signature that uses the minimum number of negative edges while ensuring that every 4-cycle is negative. This problem turns out to be related to one of Erdös' problems on the largest 4-cycle free subgraph of the hypercube

    Critical care admission following elective surgery was not associated with survival benefit: prospective analysis of data from 27 countries

    Get PDF
    This was an investigator initiated study funded by Nestle Health Sciences through an unrestricted research grant, and by a National Institute for Health Research (UK) Professorship held by RP. The study was sponsored by Queen Mary University of London

    The surgical safety checklist and patient outcomes after surgery: a prospective observational cohort study, systematic review and meta-analysis

    Get PDF
    © 2017 British Journal of Anaesthesia Background: The surgical safety checklist is widely used to improve the quality of perioperative care. However, clinicians continue to debate the clinical effectiveness of this tool. Methods: Prospective analysis of data from the International Surgical Outcomes Study (ISOS), an international observational study of elective in-patient surgery, accompanied by a systematic review and meta-analysis of published literature. The exposure was surgical safety checklist use. The primary outcome was in-hospital mortality and the secondary outcome was postoperative complications. In the ISOS cohort, a multivariable multi-level generalized linear model was used to test associations. To further contextualise these findings, we included the results from the ISOS cohort in a meta-analysis. Results are reported as odds ratios (OR) with 95% confidence intervals. Results: We included 44 814 patients from 497 hospitals in 27 countries in the ISOS analysis. There were 40 245 (89.8%) patients exposed to the checklist, whilst 7508 (16.8%) sustained ≄1 postoperative complications and 207 (0.5%) died before hospital discharge. Checklist exposure was associated with reduced mortality [odds ratio (OR) 0.49 (0.32–0.77); P\u3c0.01], but no difference in complication rates [OR 1.02 (0.88–1.19); P=0.75]. In a systematic review, we screened 3732 records and identified 11 eligible studies of 453 292 patients including the ISOS cohort. Checklist exposure was associated with both reduced postoperative mortality [OR 0.75 (0.62–0.92); P\u3c0.01; I2=87%] and reduced complication rates [OR 0.73 (0.61–0.88); P\u3c0.01; I2=89%). Conclusions: Patients exposed to a surgical safety checklist experience better postoperative outcomes, but this could simply reflect wider quality of care in hospitals where checklist use is routine

    Prospective observational cohort study on grading the severity of postoperative complications in global surgery research

    Get PDF
    Background The Clavien–Dindo classification is perhaps the most widely used approach for reporting postoperative complications in clinical trials. This system classifies complication severity by the treatment provided. However, it is unclear whether the Clavien–Dindo system can be used internationally in studies across differing healthcare systems in high- (HICs) and low- and middle-income countries (LMICs). Methods This was a secondary analysis of the International Surgical Outcomes Study (ISOS), a prospective observational cohort study of elective surgery in adults. Data collection occurred over a 7-day period. Severity of complications was graded using Clavien–Dindo and the simpler ISOS grading (mild, moderate or severe, based on guided investigator judgement). Severity grading was compared using the intraclass correlation coefficient (ICC). Data are presented as frequencies and ICC values (with 95 per cent c.i.). The analysis was stratified by income status of the country, comparing HICs with LMICs. Results A total of 44 814 patients were recruited from 474 hospitals in 27 countries (19 HICs and 8 LMICs). Some 7508 patients (16·8 per cent) experienced at least one postoperative complication, equivalent to 11 664 complications in total. Using the ISOS classification, 5504 of 11 664 complications (47·2 per cent) were graded as mild, 4244 (36·4 per cent) as moderate and 1916 (16·4 per cent) as severe. Using Clavien–Dindo, 6781 of 11 664 complications (58·1 per cent) were graded as I or II, 1740 (14·9 per cent) as III, 2408 (20·6 per cent) as IV and 735 (6·3 per cent) as V. Agreement between classification systems was poor overall (ICC 0·41, 95 per cent c.i. 0·20 to 0·55), and in LMICs (ICC 0·23, 0·05 to 0·38) and HICs (ICC 0·46, 0·25 to 0·59). Conclusion Caution is recommended when using a treatment approach to grade complications in global surgery studies, as this may introduce bias unintentionally
    corecore