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Abstract
Recently, using spectral techniques, H. Huang proved that every subgraph of the hypercube of
dimension n induced on more than half the vertices has maximum degree at least

√
n. Combined

with some earlier work, this completed a proof of the sensitivity conjecture. In this work we show
how to derive a proof of Huang’s result using only linear dependency and independence of vectors
associated with the vertices of the hypercube. Our approach leads to several improvements of the
result. In particular we prove that in any induced subgraph of Hn with more than half the number
of vertices, there are two vertices, one of odd parity and the other of even parity, each with at least
n vertices at distance at most 2. As an application we show that for any Boolean function f , the
polynomial degree of f is bounded above by s0(f)s1(f), a strictly stronger statement which implies
the sensitivity conjecture.
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1 Introduction

Recently, Hao Huang [10] provided a beautiful short proof for the missing link of an important
conjecture in complexity theory known as the sensitivity conjecture [15]. What Huang proved
is the following graph theoretic statement:

I Theorem 1 (Huang). Any induced subgraph of the n-dimensional hypercube with more
than 2n−1 vertices has at least one vertex of degree larger than or equal to

√
n.

This improves a logarithmic lower bound given by Chung, Füredi, Graham and Seymour
[6], who also gave a construction of an induced subgraph on 2n−1 + 1 vertices with maximum
degree d

√
ne.

Huang’s proof uses a few key facts: first of all (informally) it gives a signature to the
hypercube Hn to form a signed graph with exactly two eigenvalues. Then it uses a spectral
argument known as the “interlace theorem” to determine the largest eigenvalue of the matrix
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corresponding to the induced subgraph of this signed graph, where the number of vertices is
larger than half of the total number of vertices. Finally, the fact that the maximum degree of
a graph must be larger than the maximum eigenvalue is used. The proof by Huang has since
inspired works showing alternate proofs [13], connections to exterior algebra [11], Clifford
algebra [17, 14] and the Jordan-Wigner transformation [8].

Knuth [13] exhibited a collection of eigenvectors of this signed graph and using a basis
for the eigenspace corresponding to the larger eigenvalue, provided a proof that while using
linear algebra, does not use spectral arguments. The idea of using the linear dependence
and a basis of the eigenspace for proving the sensitivity conjecture has been attributed to a
comment by Shalev Ben-David [13].

Mathews extended the result to weighted hypercubes [14], where all the edges corres-
ponding to coordinate i have the same weight.

In this work, analyzing what makes this eigenvalues argument work, we present a proof
which is based on linear dependency and the dimension of vector spaces. Our approach leads
to stronger statements which we then use to derive applications in the study of the sensitivity
of Boolean functions.

Specifically, we obtain the following new results. Let NF (x) be the set of all neighbours
of a vertex x in the subgraph of the n-dimensional Boolean hypercube induced on a set of
vertices F . The size of this set, which is the degree of x in this subgraph, is denoted by
dF (x). Let NF

2 (x) be the set of vertices y ∈ F at distance 2 from x such there is a unique
2-path in this subgraph from each of them to x.

I Theorem 2. Given a set F of vertices of the n-dimensional Boolean hypercube with
|F | ≥ 2n−1 + 1, there exists vertices u, v in the subgraph induced on F with |u| and |v| having
even and odd parity respectively such that |NF (u)|+ |NF

2 (u)| ≥ n and |NF (v)|+ |NF
2 (v)| ≥ n.

Based on a notion of linear dependence which is the essence of this work, a stronger
statement is given and proven as Theorem 16. As a corollary we obtain the following, which
is also given in its stronger form as Corollary 17,

I Corollary 3. Given a set F of vertices of the n-dimensional Boolean hypercube with
|F | ≥ 2n−1 + 1, there exists an edge uv such that dF (u)× dF (v) ≥ n in the induced subgraph
on F .

As a corollary we have the following statement relating the degree of a function to its
0-sensitivity and 1-sensitivity (which will be defined in the next section),

I Corollary 4. For any Boolean function f , we have deg(f) ≤ s0(f)s1(f).

We illustrate in Section 5.3, by applying it to Chakraborty’s family of Boolean functions,
that this is a strictly stronger statement than deg(f) ≤ s2(f). We also note that Aaronson
et al. [1] recently gave a new proof of this corollary of our result using Huang’s theorem as a
black-box.

2 Preliminaries

2.1 The Boolean hypercube
The Boolean hypercube of dimension of n, denoted Hn, is a graph whose vertex set V (Hn)
is the set of all binary vectors (or strings) from Zn

2 . Two vertices are adjacent to each
other if their binary difference is one of the elements of the standard basis, i.e. u ∼ v if
u⊕ v = ei for some i ∈ {1, 2, . . . , n} or equivalently, if their Hamming distance dH(u, v) is 1.
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On labeling the coordinates of the vectors in Zn
2 with elements of [n] = {1, 2, . . . , n}, there is

a natural bijection between binary vectors of length n with subsets of [n]: a subset B of [n]
is associated with the binary vector eB whose coordinate i is 1 if and only if i ∈ B. When B
contains a single element i, we may write i in place of {i}. Thus eB is the natural extension
of the standard basis and we use |B| to denote the size of B which also corresponds to the
Hamming weight of the corresponding string.

The hypercube of dimension n is a bipartite graph. Vertices eB with an even |B| form
one part of the hypercube and those with an odd |B| form the other part. The set of odd
vertices of Hn will be denoted by Uodd

n or simply Uodd (when n is clear from the context)
and the set of even vertices will be denoted by U even

n or U even.

2.2 Binary functions and sensitivity
A binary function is any function from Zn

2 to Z2. It can be equivalently viewed as a 2-coloring
of vertices of Hn (not necessarily a proper coloring). Given a binary function f , a vector x is
said to be sensitive at coordinate i if f(x+ ei) 6= f(x). The sensitivity of x with respect to
f is the number of coordinates at which it is sensitive. When viewed on a graph, it is the
number of vertices of a color different from itself that it is adjacent to. The sensitivity of the
function f , denoted s(f), is then defined to be the maximum sensitivity over all vectors in Zn

2
with respect to f . Given a subset B of [n], a vector x is said to be B-sensitive with respect to
f , if f(x+ eB) 6= f(x). The block sensitivity of x with respect to f is the maximum number
of disjoint subsets Bi of [n] such that x is Bi-sensitive for each i. The block sensitivity of f
is the maximum block sensitivity over all vectors in Zn

2 with respect to f .
The 0-sensitivity of Boolean function f , denoted s0(f), is the maximum sensitivity over

binary vectors which evaluate to 0 on f . The 1-sensitivity of Boolean function f , denoted
s1(f), is defined similarly.

I Definition 5. A Boolean function is said to be parity-balanced if the number of even
vectors that evaluate to 1 is the same as the number of odd vectors that evaluate to 1 (see
Figure 1).

As shown in Figure 1, a binary function can be viewed as a 2-colouring of the hypercube.
The sensitivity of a vertex is its degree in the subgraph restricted to edges between vertices
colored 0 and vertices colored 1. These “sensitive” edges are represented by solid edges in
Figure 1. The 0-sensitivity (or 1-sensitivity) of a function is the maximum sensitivity among
all vertices coloured 0 (or 1).

f−1(1)

Uodd

f−1(0)

Ueven

x

(a) Not parity-balanced function.

f−1(1)

Uodd

f−1(0)

Ueven

(b) Parity-balanced function.

Figure 1 Graph representation of binary functions where sensitive edges are shown as solid lines.
In the subgraph of the hypercube consisting of sensitive edges, the graph degree of a vertex is its
sensitivity. Parity-balance in a Boolean function can be thought of as the equality of the shaded
regions in the figure above.
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2.3 Polynomials and degree
For a vector v ∈ Zn

2 whose support is B, we define the multilinear polynomial Pv : Rn → R
as follows:

Pv =
∏
i∈B

xi

∏
j∈B

(1− xj).

The polynomial has the property that when restricted to the elements of Zn
2 , it takes the

value 1 on v and 0 elsewhere. This polynomial has degree n where the coefficient of the term
x1x2 . . . xn is either +1 or −1 depending on the parity of v.

A polynomial p : Rn 7→ R represents a boolean function f if for all x ∈ {0, 1}n, p(x) =
f(x). Every Boolean function can be represented by a multilinear polynomial Pf which is
the sum of polynomials Pv such that f(v) = 1,

Pf =
∑

v;f(v)=1

Pv

We may now define the degree of a Boolean function f , denoted deg(f), as the degree of
the multilinear polynomial Pf . Observe that a Boolean function f has full degree (i.e. degree
n) if and only if it is not parity-balanced. This can also be found in [3] and was attributed
to Yao and Shi.

3 The sensitivity conjecture

The sensitivity conjecture as posed by Nisan and Szegedy [15] was the following problem,

I Problem 6. For every Boolean function f,

bs(f) ≤ (s(f))O(1)

The last piece of the proof of this conjecture was proved in 2019 by Huang [10]. Below, we
state and review some of the works on the sensitivity conjecture leading up to this paper.

Nisan and Szegedy [15, 16] established a strong connection between degree and block
sensitivity of a Boolean function:

I Theorem 7. (Nisan-Szegedy, Tal) For any Boolean function f , we have:

bs(f) ≤ deg(f)2

This was proved using symmetrization and lower bounds on the degree of single-variable
polynomials. An excellent exposition on the proof of this theorem and those that relate
other measures of complexity of Boolean functions such as certificate complexity, decision
tree complexity to block sensitivity can be found in [3]. The theorem in its present form is
due to Tal [16].

In 1992, Gotsman and Linial [7] showed the equivalence of the problem of showing that
the polynomial degree of a function is at most some polynomial in the sensitivity of the
function and the graph theoretic problem stated in Theorem 1.

I Theorem 8. (Gotsman-Linial) The following are equivalent for any monotone function
h : N 7→ R:
1. For any induced subgraph G of Hn such that |V (G)| 6= 2n−1, there exists a vertex with

degree ≥ h(n) in either G or Hn −G.
2. For any Boolean function f, s(f) ≥ h(deg(f)).
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A rough sketch of this proof is as follows: consider a monomial of the largest degree in the
multilinear polynomial representing the Boolean function and discard all variables that do
not appear in this monomial (i.e. set them to zero). The sensitivity of the modified function
f ′ might be smaller than that of the original function, but the polynomial degree of the
function is preserved and f ′ now has full polynomial degree. The range of f ′ is taken to
be {+1,−1} instead of {0, 1}. This function is further modified as g(x) = f ′(x)p(x) where
p(x) = (−1)

∑
xi is the parity function.

Notice that if we consider the graph induced by the vertices in g−1(0) (similarly for
g−1(1)), the graph degree of a vertex x in this subgraph is the sensitivity of x with respect
to f . Equivalently, we can bypass g and consider the bipartite graph induced by the vertices
in (f ′−1(0) ∩ U even) ∪ (f ′−1(1) ∩ Uodd), (similarly for (f ′−1(1) ∩ U even) ∪ (f ′−1(0) ∩ Uodd)).

Since the function f ′ has full degree, f ′ is not parity-balanced and without loss of
generality assume |f ′−1(1) ∩ Uodd| > |f ′−1(1) ∩ U even|. This implies that there are more
than 2n−1 vertices in (f ′−1(1) ∩ Uodd) ∪ (f ′−1(0) ∩ U even). By proving Theorem 1, it was
shown that the induced subgraph on this set of vertices has a vertex with sensitivity at least√
n =

√
deg(f). Hatami et al. [9] provides a clear presentation of this proof and surveys

in detail the results leading up to the recent proof of the sensitivity conjecture. Putting
together Theorem 1, Theorem 7 and Theorem 8, we now have that bs(f) ≤ s(f)4.

4 Graph degree lower bound revisited

In this section we first state the key tools and ideas that go into our simplification of Huang’s
theorem (Theorem 1) and then provide the details. Given a hypercube Hn, let σ be an
assignment of + or − to the edges such that each 4-cycle has an odd number of negative
edges. As we shall see, this is the only property of Huang’s signature that is needed to
derive the degree lower bound. Such a signature has been introduced independently in a
number of places, in many of them implicitly. For the sake of completeness, we will discuss
in Section 4.1 the construction of such a signature, how to find all such signatures and we
will provide some references to previous appearances of this signature. To simplify notation,
we extend σ by setting it to 0 for all non-adjacent pairs of vertices in the Boolean hypercube.

A crucial step in our approach is the following definition. Recall that a binary vector or
a binary string of length n is a vertex of Hn. For any vertex x of Hn, we define a real valued
vector x+ of length 2n whose coordinates are labeled by vertices y of Hn. We use x+

(y) to
denote the value at the coordinate y of a vector x+.

I Definition 9. For all vertices x of Hn, we define the vectors x+ and x− as follows, for all
y ∈ V (Hn),

x+
(y) =

{√
n if x = y

σ(x, y) otherwise ,
x−(y) =

{
−
√
n if x = y

σ(x, y) otherwise .

Note that each of the vectors x+ or x− is non-zero only at the coordinates corresponding
to x and its neighbors in the hypercube. We use V + and V − to denote the subspace generated
by the vectors x+ and x−, i.e. V + = 〈x+

1 , x
+
2 , . . . , x

+
2n〉 and V − = 〈x−1 , x

−
2 , . . . , x

−
2n〉.

One may observe that V + and V − are the eigenspaces of the signed adjacency matrix,
but we will not use this fact in our proofs.

A set of vectors S = {v1, v2, . . . , vk} is said to have a linear dependency if we have∑
i aivi = 0 for some choice of real numbers ai not all of which are zero, and where 0 is the

all-zero vector.

MFCS 2020
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Theorem 1 is the immediate corollary of the following facts:

I Observation 10. If the vectors {x+
1 , x

+
2 , . . . , x

+
k } have a linear dependency, then the

subgraph induced on the corresponding vertices {x1, x2, . . . , xk} of Hn has a vertex of degree
at least

√
n.

Proof. Suppose
∑

aix
+
i = 0 with ai 6= 0 and let |aj | be a largest among all |ai|’s. For the

row corresponding to vertex xj to vanish when viewing x+
i as a column vector, there must

be at least d
√
n e other vectors in the linear dependency that are nonzero at the coordinate

xj . Since those vectors can only correspond to neighbours of xj each of which can contribute
at most |aj | to the sum, xj must have at least

√
n neighbours. J

I Proposition 11. The subspaces V + and V − are each of dimension 2n−1.

A proof of this will be given in Section 4.2. As an immediate corollary we have that
for any set of 2n−1 + 1 vertices, there must be a linear dependency among some of the
corresponding vectors which implies the existence of a vertex of degree at least

√
n.

4.1 Signatures with negative 4-cycles

Let us first see the construction of a signature on Hn such that every 4-cycle in Hn is negative,
i.e., the product of the signs on the edges in the cycle is negative. A signature with this
property was used in [2] to show that one can choose nonzero weights on the edges to have
exactly two eigenvalues for the corresponding weighted graph. This is implicit in the proof
of Theorem 6.7 and its Corollary 6.9 in [2]. This is the same signature that was given by
Huang inductively.

A signature with this property can easily be constructed on H2 which consists of a single
C4: assign to one or three edges a negative sign, and to the rest a positive sign. Recall
that Hn is built recursively from two disjoint copies of Hn−1 by adding a matching between
corresponding vertices. Having found a signature σn−1 for Hn−1, proceed as follows: in the
first copy of Hn−1 assign signs as in σn−1, and in the other copy assign signs complementary
to that in σn−1. Finally, all edges in the matching are assigned the same sign. Observe that
4-cycles in each of the two copies inherit the property. The 4-cycles formed using two edges
of the matching use corresponding edges from the two copies which are of opposite signs.

We point out that there are exactly 22n−1 signatures with this property on Hn. Given
one such signature, one can get another by a switch at a vertex x of Hn, i.e. by switching
the signs of edges incident on x. Observe that this operation does not change the sign of a
cycle. In terms of matrices, this is equivalent to multiplying both the row and column of the
adjacency matrix corresponding to x by −1. This does not change the eigenvalues and the
corresponding eigenvectors are obtained by switching the sign at the xth coordinate. One
may apply a series of switches on all the vertices in a set X. A series of switches on the
complement of X results in the same assignment and so there are 22n−1 signatures.

On the other hand any signature with the property that all 4-cycles are negative is one
of the signatures discussed above. This follows from the fact that the 4-cycles generate the
cycle space of Hn and from the following Theorem of Zaslavsky.

I Theorem 12 (Zaslavsky [18, Theorem 3.2]). Given two signatures σ1 and σ2 of a graph G,
σ1 is a switching of σ2 if and only if the sets of positive (or equivalently negative) cycles of
(G, σ1) and (G, σ2) are the same.
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4.2 Dimensions of V + and V −

Here we show that both V + and V − have dimension 2n−1 (Proposition 11). We first observe
that each of these subspaces have dimension at least 2n−1. More generally we have:

I Proposition 13. For any independent set I of vertices of Hn, the sets {x+|x ∈ I} and
{x−|x ∈ I} are linearly independent.

Proof. Since I is an independent set and the vector x+ (resp. x−) is non-zero only at
the coordinate x and its neighbors in the hypercube, x+ (resp. x−) is the only vector in
{y+|y ∈ I, y 6= x} (resp. in {y−|y ∈ I, y 6= x}) which is nonzero at the coordinate x. J

Since the set of odd vertices (similarly even vertices) forms an independent set of size
2n−1 in Hn we have:

I Corollary 14. The dimension of vector spaces V + and V − are at least 2n−1, i.e. dim(V +) ≥
2n−1, dim(V −) ≥ 2n−1.

The fact that equality holds in each of these inequalities is a consequence of the following
proposition.

I Proposition 15. The subspaces V + and V − are orthogonal to each other.

We note that the choice of a signature where each 4-cycle is negative is key for this claim
to hold.

Proof. We must show that for an arbitrary choice of vertices x and y (not necessarily distinct)
the vectors x+ and y− are orthogonal. Depending on the distance between x and y, we
consider the following 4 cases:

Case 1. If x = y, then the non-zero terms in the inner product are at the coordinate x and
its neighbors.

〈x+, x−〉 = −
√
n ·
√
n+

∑
z:z∼x

(
σ(x, z)

)2 = −n+ n = 0

Case 2. If x ∼ y, then the only non-zero coordinates in the inner product are x and y (since
x and y do not share any common neighbours).

〈x+, y−〉 =
√
nσ(x, y)−

√
nσ(x, y) = 0

Case 3. If dH(x, y) = 2, observe that there are exactly two vertices (say v and v′) adjacent
to both x and y. These form a 4-cycle and by the assumption on the signature σ,
σ(x, v)σ(v, y) = −σ(x, v′)σ(y, v′). Therefore,

〈x+, y−〉 = σ(x, v)σ(v, y) + σ(x, v′)σ(y, v′) = 0

Case 4. If dH(x, y) ≥ 3, there are no common non-zero terms in the vectors and the inner
product 〈x+, y−〉 is trivially 0.

This completes the proof of orthogonality. J

MFCS 2020
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4.3 A short proof of Huang’s result
As already mentioned in Observation 10, dim(V +) = dim(V −) = 2n−1 implies Theorem 1.
However, to prove this theorem, or for the strengthening we provide in the next section, one
only needs an upper bound of 2n−1 for the dimension of one of these two vectors spaces.
This can simply be presented using the adjacency matrix of the signed hypercube which
leads to a concise proof of Huang’s result as follows.

The main characteristic of the signature discussed above is that the incidence matrix A
of the corresponding signed graph satisfies A2 = nI. This is equivalent to

(A+
√
nI)(A−

√
nI) = 0.

Notice that the rows (or, equivalently, the columns) of (A+
√
nI) are the v+ vectors we

have considered, and similarly for v− and (A −
√
nI). The above identity is an alternate

proof that V + and V − are orthogonal. As both are subspaces of R2n , one of the two has
dimension at most 2n−1. Thus in the smaller of these subspaces, in any subset of rows (or
columns) corresponding to a set F of 2n−1 + 1 vertices, there has to be a nontrivial linear
dependency. Given such a linear dependency, let u be a vertex whose coefficient has the
largest absolute value. Then, for the linear identity to hold at the coordinate u, u must have
at least

√
n neighbours among the vertices in F .

5 Strengthening Huang’s result

Huang’s proof yields a lower bound on the graph degree when the number of vertices is large
enough. We can strengthen this result in two ways. First, we can weaken the hypothesis to
any graph presenting a linear dependency regardless of the number of vertices in the linear
dependency. Second, we can exploit the linear dependency further to extract more structural
information about the graph, in addition to its largest degree.

5.1 Structural information from linear dependencies
We introduce the following terminology before going into our results. Consider a non-trivial
linear relation F given as

∑
u∈Uodd

auu
+ =

∑
v∈Ueven

bvv
+ where au and bv are real numbers,

allowed to be 0. We are interested in cases where not all of the coefficients are 0 and in such
cases F is called a nontrivial linear dependency. Let HF denote the subgraph of the Boolean
hypercube induced by the vertices of Hn which have a nonzero coefficient in F .

By Proposition 11, for any set K of vertices of Hn with |K| ≥ 2n + 1 there exists a
nontrivial linear dependency F such that V (HF ) ⊆ K. Thus the following theorem is stronger
than the Theorem 2 stated in the introduction.

I Theorem 16. Given a nontrivial linear dependency relation F on a subset of vertices in
Hn, there exist vertices u ∈ Uodd and v ∈ Ueven in HF such that |NF (u)| + |NF

2 (u)| ≥ n

and |NF (v)|+ |NF
2 (v)| ≥ n.

The proof of this theorem will be given after a technical lemma. We would like to first
point out a corollary of this theorem. This corollary is observed by taking a vertex u given
by the theorem and considering its neighbor which has the largest degree in HF among all
neighbours of u.

I Corollary 17. If F is a nontrivial linear dependency relation, there exists an edge (u, v) in
HF such that dF (u)× dF (v) ≥ n.
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We would like to point out that both Theorem 16 and its corollary are strictly stronger
than their counterparts stated in the introduction because a linear dependency can happen
in smaller sets, the smallest being of size n+ 1 (see Section 6.3 for more details).

The key tool in the proof of Theorem 16 is Lemma 18 which follows. For any pair of
vertices x and y at distance 2 in Hn, there are exactly two paths of length 2 connecting them.
When there is a unique 2-path connecting x and y in HF , we extend the signature to σ̂ such
that σ̂F (x, y) = σ(x, z)σ(z, y) where z is the unique common neighbor of x and y in HF .

I Lemma 18. Given a linear dependency F defined by
∑

u∈Uodd

auu
+ =

∑
v∈Ueven

bvv
+, for every

vertex x ∈ HF ∩ Uodd and y ∈ HF ∩ Ueven we have

(n− dF (x))ax =
∑

z∈NF
2 (x)

σ̂F (x, z)az, and (n− dF (y))by =
∑

t∈NF
2 (y)

σ̂F (t, y)bt.

Proof of Lemma 18. The vectors u+, v+ are viewed as column vectors. In the linear de-
pendency, by considering the row corresponding to some arbitrary fixed coordinate x ∈ Uodd:

√
nax =

∑
v∈NF (x)

σ(x, v)bv (1)

Similarly by considering the row corresponding to any coordinate v ∈ U even we get:
√
nbv =

∑
u∈NF (v)

σ(u, v)au. (2)

Multiplying both sides of Equation (1) by
√
n we have:

nax =
∑

v∈NF (x)

σ(x, v)
√
nbv. (3)

Replacing each
√
nbv on the right side of Equation (3) by the corresponding right side of

Equation 2, we have:

nax =
∑

v∈NF (x)

∑
u∈NF (v)

σ(x, v)σ(v, u)au. (4)

On examining the right side of this identity we make two key observations. The first is that
ax appears for each v in its neighbourhood with a coefficient σ(x, v)2 = 1. The second, which
is based on the main property of the signature we have chosen to work with, is that if a
vertex u, u 6= x, appears on the right hand side twice, then the sum of its coefficients is 0
(this is equivalent to saying σ(x, v1)σ(v1, u) = −σ(x, v2)σ(v2, u) where x, v1, u, v2 is a 4-cycle
in HF ).

Rearranging the terms and simplifying gives (n − dF (x))ax =
∑

u∈NF
2 (x)

σ̂F (x, u)au, as

claimed. The proof of the identity for the vertices in U even is analogous. J

We can now complete the proof of the statement about the second neighborhood of vertices
in HF .

MFCS 2020
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Proof of Theorem 16. Consider a (nontrivial) linear dependency
∑

u∈Uodd

auu
+ =

∑
v∈Ueven

bvv
+

and let |ax| = max
z∈Uodd

{|az|}. Observe that ax 6= 0 by our assumption on F . Now consider

the identity (n− dF (x))ax =
∑

z∈NF
2 (x)

σ̂F (x, z)az. Since |az| ≤ |ax|, there should be at least

n− dF (x) values of az which are nonzero for this identity to hold.
An analogous argument follows for the other part by taking the maximum value over

|bv|. J

The following, which immediately follows from Corollary 17, is already stronger than
Theorem 1 because the dimension of V + is 2n−1. It is a strictly stronger statement because
linear dependency may occur over much smaller sets of vertices.

I Corollary 19. If F is a nontrivial linear dependency relation, then there exists a vertex u
in HF such that dF (u) ≥

√
n.

5.2 From linear dependency to sensitivity
Finally, we prove Corollary 4 which is a stronger upper bound on the polynomial degree of a
boolean function.

Proof. If deg(f) is d, we can concentrate on a function f ′ of degree d on d variables by setting
the variables outside of the largest monomial to 0. This can only decrease the sensitivity.
Recall that Observation 10 states that any linear dependency among the vectors of V +

corresponding to a set of vertices F implies the existence of a vertex with graph degree at
least

√
d. From Gotsman and Linial (see Theorem 8), we know that the sensitivity with

respect to f of input x is the graph degree of a vertex x in the bipartite subgraph induced
by F = (f ′−1(0) ∩ U even) ∪ (f ′−1(1) ∩ Uodd) or F ′ = (f ′−1(1) ∩ U even) ∪ (f ′−1(0) ∩ Uodd)
depending on f ′(x) and the parity of |x|. Since f ′ has full polynomial degree, it is not parity-
balanced. Therefore one of these bipartite subgraphs has at least 2d−1 + 1 vertices. Since the
dimension of V + is 2d−1, any set of 2d−1 + 1 vectors from V + has a linear dependency and
the larger of the two induced subgraphs, say F wlog, has a linear dependency. Therefore,
there exists some vertex in this induced subgraph that has graph degree at least

√
d. This

proves that the sensitivity of the function is at least
√
d =

√
deg(f) as d is the degree of the

original function f .
For the stronger statement, we use Corollary 17, which says that in any non-trivial linear

dependency, there exists an edge (u, v) in the subgraph F such that dF (u)dF (v) ≥ d. By
definition of F , f ′(u) 6= f ′(v), so s0(f)s1(f) ≥ s0(f ′)s1(f ′) ≥ d = deg(f). J

Notice that we have proven something stronger, which is that the lower bound on s0 and
s1 is achieved on inputs at Hamming distance 1.

Since by Theorem 7 bs(f) ≤ deg(f)2, we get the following polynomial relation between
sensitivity and block sensitivity.

I Corollary 20. For any Boolean function f , bs(f) ≤ s0(f)2s1(f)2.

5.3 Application of the degree bound
For many known functions, s0(f)s1(f) ≥ n. It was suggested by Kenyon and Kutin [12] that
for most “interesting” functions, this was the case, making it difficult to find cases where
s0(f)s1(f) gives a non-trivial upper bound on degree. One such family of functions was
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given by Chakraborty[4, 5]. To present this family of functions we use notation from regular
expressions, where a set represents alternative, juxtaposition represents concatenation, and
exponents represent repetition.

I Definition 21. Given positive integer k ≥ 8 and integer n ≥ k2, the Chakraborty function
fn,k is defined using the following auxiliary function gk : {0, 1}k2 7→ {0, 1}.

gk(x) = 1 ⇐⇒ x ∈ 110k−2(11111Σk−5)k−211111Σk−8111

where Σ = {0, 1}. The function fn,k : {0, 1}n 7→ {0, 1} evaluates to 1 if and only if there
exists a (consecutive) substring z of length k2 such that g(z) = 1.

An alternate definition of the auxiliary function gk can be given by defining the set Ck

of k2-length strings on which gk evaluates to 1. To define Ck, we first partition the k2

coordinates into k blocks of k consecutive coordinates. A binary vector of length k2 is in
Ck iff in the first block the first two positions are 1’s followed by k − 2 0’s, in all the other
blocks the starting five positions are 1’s, and the last block ends with three 1’s (the other
positions in these blocks are unconstrained).

Chakraborty showed the following properties.

I Proposition 22 ([4, 5]). For any k ≤
√
n,

1. s0(fn,k) = n
k2 , s1(fn,k) = k.

2. bs(fn,k) = n
k

Using Corollary 4, we give a new upper bound on the polynomial degree of fn,k.

I Proposition 23. For any k ≤
√
n.

1. deg(fn,k) ≤ n
k .

2. deg(fn,k) ≥
√

n
k .

Proof. The first item is immediate from Corollary 4 and Proposition 22. For the second
item we use the upper bound bs(f) ≤ deg(f)2 (Theorem 7). J

6 Further discussion

In this section we look at some further implications of techniques developed in the previous
sections. We look at how they can be used to prove analogous results in weighted hypercubes
and what they imply for cases where the maximum degree of the subgraph is close to

√
n.

6.1 Weighted version
Let {ai} for i = 1, 2, . . . , n be a sequence of nonzero real values. Consider the following weight
assignment to the edges of Hn: if the edge (x, y) corresponds to the coordinate i (i.e., x and y
differ only at the coordinate i), then the edge (x, y) is assigned a weight ai. Furthermore, we
multiply the weight of the edge (x, y) to the signature of the edge σ(xy) which was defined
in the previous sections. The adjacency matrix of the corresponding signed weighted graphs
has exactly two eigenvalues: ±

√
a2

1 + a2
2 + . . .+ a2

n. This would follow from Theorem 6.7 of
[2] if one follows the proof steps to complete the proof of Corollary 6.9 starting with K2.
However, without the use of this fact and with a modification of our proof of Theorem 1,
we can give a proof of the following weighted version of Huang’s theorem, first proved by
Mathews[14] using Clifford algebras.

MFCS 2020
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I Theorem 24. Given a weighted hypercube Hn where the edges corresponding to coordinate
i are given a weight ai with ai 6= 0, in the induced subgraph corresponding to any set of
2n−1 + 1 vertices, there exists a vertex x whose sum of weights of incident edges is at least√
a2

1 + a2
2 + . . .+ a2

n.

Proof. Once the definitions of the vectors x+ and x− are modified, the rest of the proof is
exactly the same. The xth coordinate of x+ is set as

√
a2

1 + a2
2 + . . .+ a2

n and that of x− is
set as −

√
a2

1 + a2
2 + . . .+ a2

n. If y is adjacent to x and y = x+ ei, then the yth coordinate of
both x+ and x− is set as σ(xy)ai. All other coordinates are set to 0. J

We note that methods of Section 5 can apply to this weighted version to get analogous
stronger results.

6.2 Tightness
To summarize our result, what we have proved here is that in a subgraph induced by a set of
vertices with a linear dependency, the maximum degree lies between n and

√
n, with both

extremities being tight. Furthermore, we proved that the closer we are to the lower bound
the more vertices we must have from the second neighbourhood of a vertex with maximum
degree. However this is not the limit of our approach, it can imply more vertices from the
third neighbourhood and so on. While we do not yet have the strongest claim to present,
we have the following observation in the case where the maximum degree is exactly

√
n

(assuming that n is a perfect square).

I Theorem 25. If F is a nontrivial linear dependency relation and HF has maximum degree
exactly

√
n, then the vertices in HF of degree

√
n induce a

√
n-regular subgraph.

This theorem is corollary of our proof of Observation 10 and its details are left to the
reader.

The folklore example of AND-of-ORs function, defined next, exhibits such a behaviour.
Let n = k2 and B1, B2, . . . , Bk be a partition of n coordinates into k blocks each of size k.
The AND-of-ORs function assigns to an input x a value 1 if for each Bi, x has a 1 in at least
one coordinate of Bi and it assigns 0 to x otherwise. We refer to [9] and references therein
for details about this function.

6.3 Linear dependency
We remark that the vectors x+ and x− were built by further investigating Huang’s proof using
eigenvalues. The set V + generated by {x+ | x ∈ V (Hn)} is the eigenspace corresponding
to the eigenvalues

√
n of the incidence matrix of the signed graph (Hn, σ) and the set V −

generated by {x− | x ∈ V (Hn)} is eigenspace corresponding to the eigenvalue −
√
n. This

provides an alternate proof for the fact that V + is orthogonal to V − and that each is of
dimension (at most) 2n−1.

Our approach to this problem suggests a strong connection between linear dependency of
the vectors x+

i in the study of the sensitivity of a function. It is, therefore, intriguing to ask:

I Problem 26. What are the (minimal) subsets of V + that are linearly dependent?

The smallest linear dependency is among a vertex and all its neighbours:

x+ = 1√
n

∑
y∼x

σ(xy)y+.
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On the other hand for linearly independent sets, the easiest examples are sets I of vectors
x+’s where for every vector x+ ∈ I there exists a coordinate u ∈ V (Hn) such that x+ is
the only vector in I that is nonzero at u. We call such a linearly independent set a basic
linearly independent set. The main example of a basic linearly independent set is the set
{u+ | u ∈ Uodd} or {v+ | v ∈ U even}. Each of these sets provides an orthogonal basis for the
V +.

Another example of basic linearly independent set is the set of all u+ where, for a fixed i,
the ith coordinate of u is 1. Then for each u+ of this set, the vector u+ is the only vector of
the set that is not 0 at the coordinate u+ ei. Thus taking all such vectors provides another
basis for V +, but this basis is no longer an orthogonal one. The proof of Huang’s result
given by Knuth in [13] uses one such basis with i = n.

References
1 Scott Aaronson, Shalev Ben-David, Robin Kothari, and Avishay Tal. Quantum implications

of huang’s sensitivity theorem. CoRR, abs/2004.13231, 2020. arXiv:2004.13231.
2 Bahman Ahmadi, Fatemeh Alinaghipour, Shaun Cavers, Michael S.and Fallat, Karen Meagher,

and Shahla Nasserasr. Minimum number of distinct eigenvalues of graphs. Electronic Journal
of Linear Algebra, 26(45):673–691, 2013. doi:10.13001/1081-3810.1679.

3 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
A survey. Theor. Comput. Sci., 288(1):21–43, October 2002. doi:10.1016/S0304-3975(01)
00144-X.

4 Sourav Chakraborty. Sensitivity, block sensitivity and certificate complexity of boolean
functions. Master’s thesis, The University of Chicago, 2010.

5 Sourav Chakraborty. On the sensitivity of cyclically-invariant Boolean functions. Discrete
Mathematics & Theoretical Computer Science, Vol. 13 no. 4, 2011. URL: https://dmtcs.
episciences.org/552.

6 F. R. K. Chung, Zoltán Füredi, R.L Graham, and P. Seymour. On induced subgraphs of
the cube. Journal of Combinatorial Theory, Series A, 49(1):180–187, 1988. doi:10.1016/
0097-3165(88)90034-9.

7 C Gotsman and N Linial. The equivalence of two problems on the cube. Journal of Combinat-
orial Theory, Series A, 61(1):142–146, 1992. doi:10.1016/0097-3165(92)90060-8.

8 Yingfei Gu and Xiao-Liang Qi. Majorana fermions and the sensitivity conjecture. arXiv
1908.06322, 2019. arXiv:1908.06322.

9 Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on the Sensitiv-
ity Conjecture. Number 4 in Graduate Surveys. Theory of Computing Library, 2011.
doi:10.4086/toc.gs.2011.004.

10 Hao Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture.
Annals of Mathematics, 190(3):949–955, 2019. URL: https://www.jstor.org/stable/10.
4007/annals.2019.190.3.6.

11 Roman Karasev. Huang’s theorem and the exterior algebra. Technical Report 1907.11175,
arXiv, 2019. arXiv:1907.11175.

12 Claire Kenyon and Samuel Kutin. Sensitivity, block sensitivity, and l-block sensitivity of boolean
functions. Inf. Comput., 189(1):43–53, February 2004. doi:10.1016/j.ic.2002.12.001.

13 Donald E. Knuth. A computational proof of Huang’s degree theorem, 2019. Manuscript,
28 July, revised 3 August, https://www.cs.stanford.edu/ knuth/papers/huang.pdf. URL:
https://www.cs.stanford.edu/~knuth/papers/huang.pdf.

14 Daniel V. Mathews. The sensitivity conjecture, induced subgraphs of cubes, and clifford
algebras. arXiv 1907.12357, 2019. arXiv:1907.12357.

15 Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials. In
Proceedings of the Twenty-fourth Annual ACM Symposium on Theory of Computing, STOC
’92, pages 462–467, New York, NY, USA, 1992. ACM. doi:10.1145/129712.129757.

MFCS 2020

http://arxiv.org/abs/2004.13231
https://doi.org/10.13001/1081-3810.1679
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://dmtcs.episciences.org/552
https://dmtcs.episciences.org/552
https://doi.org/10.1016/0097-3165(88)90034-9
https://doi.org/10.1016/0097-3165(88)90034-9
https://doi.org/10.1016/0097-3165(92)90060-8
http://arxiv.org/abs/1908.06322
https://doi.org/10.4086/toc.gs.2011.004
https://www.jstor.org/stable/10.4007/annals.2019.190.3.6
https://www.jstor.org/stable/10.4007/annals.2019.190.3.6
http://arxiv.org/abs/1907.11175
https://doi.org/10.1016/j.ic.2002.12.001
https://www.cs.stanford.edu/~knuth/papers/huang.pdf
http://arxiv.org/abs/1907.12357
https://doi.org/10.1145/129712.129757


62:14 Sensitivity Lower Bounds from Linear Dependencies

16 Avishay Tal. Properties and applications of boolean function composition. In Proceedings of
the 4th Conference on Innovations in Theoretical Computer Science, ITCS ’13, pages 441–454,
New York, NY, USA, 2013. ACM. doi:10.1145/2422436.2422485.

17 Terence Tao. Twisted convolution and the sensitivity conjecture. What’s New? (26 July,
2019), 2019.

18 Thomas Zaslavsky. Signed graphs. Discrete Applied Mathematics, 4(1):47–74, 1982. doi:
10.1016/0166-218X(82)90033-6.

https://doi.org/10.1145/2422436.2422485
https://doi.org/10.1016/0166-218X(82)90033-6
https://doi.org/10.1016/0166-218X(82)90033-6

	Introduction
	Preliminaries
	The Boolean hypercube
	Binary functions and sensitivity
	Polynomials and degree

	The sensitivity conjecture
	Graph degree lower bound revisited
	Signatures with negative 4-cycles
	Dimensions of V+ and V-
	A short proof of Huang's result

	Strengthening Huang's result
	Structural information from linear dependencies
	From linear dependency to sensitivity
	Application of the degree bound

	Further discussion
	Weighted version
	Tightness
	Linear dependency


