10 research outputs found

    Nanoscale Heat Transfer from Magnetic Nanoparticles and Ferritin in an Alternating Magnetic Field

    Get PDF
    Recent suggestions of nanoscale heat confinement on the surface of synthetic and biogenic magnetic nanoparticles during heating by radio frequency-alternating magnetic fields have generated intense interest because of the potential utility of this phenomenon for noninvasive control of biomolecular and cellular function. However, such confinement would represent a significant departure from the classical heat transfer theory. Here, we report an experimental investigation of nanoscale heat confinement on the surface of several types of iron oxide nanoparticles commonly used in biological research, using an all-optical method devoid of the potential artifacts present in previous studies. By simultaneously measuring the fluorescence of distinct thermochromic dyes attached to the particle surface or dissolved in the surrounding fluid during radio frequency magnetic stimulation, we found no measurable difference between the nanoparticle surface temperature and that of the surrounding fluid for three distinct nanoparticle types. Furthermore, the metalloprotein ferritin produced no temperature increase on the protein surface nor in the surrounding fluid. Experiments mimicking the designs of previous studies revealed potential sources of the artifacts. These findings inform the use of magnetic nanoparticle hyperthermia in engineered cellular and molecular systems

    Nanoscale Heat Transfer from Magnetic Nanoparticles and Ferritin in an Alternating Magnetic Field

    Get PDF
    Recent suggestions of nanoscale heat confinement on the surface of synthetic and biogenic magnetic nanoparticles during heating by radio frequency-alternating magnetic fields have generated intense interest because of the potential utility of this phenomenon for noninvasive control of biomolecular and cellular function. However, such confinement would represent a significant departure from the classical heat transfer theory. Here, we report an experimental investigation of nanoscale heat confinement on the surface of several types of iron oxide nanoparticles commonly used in biological research, using an all-optical method devoid of the potential artifacts present in previous studies. By simultaneously measuring the fluorescence of distinct thermochromic dyes attached to the particle surface or dissolved in the surrounding fluid during radio frequency magnetic stimulation, we found no measurable difference between the nanoparticle surface temperature and that of the surrounding fluid for three distinct nanoparticle types. Furthermore, the metalloprotein ferritin produced no temperature increase on the protein surface nor in the surrounding fluid. Experiments mimicking the designs of previous studies revealed potential sources of the artifacts. These findings inform the use of magnetic nanoparticle hyperthermia in engineered cellular and molecular systems

    Estimation of Moneyness Weights of Financial Assets in Simple Macroeconomic Model

    No full text
    The basic idea is that various financial assets have different moneyness characteristics and that money can be empirically defined as weighted sum of these financial assets. A simple macroeconomic model is constructed for the purpose of estimating the moneyness weights of financial assets. We built two basic propositions of the modern quantity theory of money into the structure of the model. The model is nonlinear and contains cross-equation constraints. Nonlinear minimum distance estimator is applied to the system as a whole, for the case of Japan. The estimated results agree with the main assertions of the quantity theory and seem to indicate that we have to pay more attention to the broader definitions of money

    An Examination of the Macro Rational Expectations Hypothesis for the High Growth Period

    No full text
    This paper investigates the joint MRE hypothesis for high growth period of Japan and Korea. One of the major finding of the paper is that rational expectations hypothesis is not rejected even under the rapidly changing circumstances of high economic growth. These results support the modeling strategies in which expectations are assumed to be rational. The fact that we have contrasting results for the neutrality proposition for Japan and Korea may be an indirect evidence of the unimportant of the real effect of the expected overall growth money supply. The total effect of the anticipated M2 on real output has been small at the most

    Hyperthermia Effect of Nanoclusters Governed by Interparticle Crystalline Structures

    No full text
    © 2021 The Authors. Published by American Chemical Society.Magnetic nanoparticles have an important role as heat generators in magnetic fluid hyperthermia, a type of next-generation cancer treatment. Despite various trials to improve the heat generation capability of magnetic nanoparticles, iron oxide nanoparticles are the only approved heat generators for clinical applications, which require a large injection dose due to their low hyperthermia efficiency. In this study, iron oxide nanoclusters (NCs) with a highly enhanced hyperthermia effect and adjustable size were synthesized through a facile and simple solvothermal method. Among the samples, the NCs with a size of 25 nm showed the highest hyperthermia efficiency. Differently sized NCs exhibit inconsistent interparticle crystalline alignments, which affect their magnetic properties (e.g., coercivity and saturation magnetization). As a result, the optimal NCs exhibited a significantly enhanced heat generation efficiency compared with that of isolated iron oxide nanoparticles (ca. 7 nm), and their hyperthermia effect on skin cancer cells was confirmed.11Nsciescopu

    Nanoscale Heat Transfer from Magnetic Nanoparticles and Ferritin in an Alternating Magnetic Field

    No full text
    © 2020 Biophysical Society. Recent suggestions of nanoscale heat confinement on the surface of synthetic and biogenic magnetic nanoparticles during heating by radio frequency-alternating magnetic fields have generated intense interest because of the potential utility of this phenomenon for noninvasive control of biomolecular and cellular function. However, such confinement would represent a significant departure from the classical heat transfer theory. Here, we report an experimental investigation of nanoscale heat confinement on the surface of several types of iron oxide nanoparticles commonly used in biological research, using an all-optical method devoid of the potential artifacts present in previous studies. By simultaneously measuring the fluorescence of distinct thermochromic dyes attached to the particle surface or dissolved in the surrounding fluid during radio frequency magnetic stimulation, we found no measurable difference between the nanoparticle surface temperature and that of the surrounding fluid for three distinct nanoparticle types. Furthermore, the metalloprotein ferritin produced no temperature increase on the protein surface nor in the surrounding fluid. Experiments mimicking the designs of previous studies revealed potential sources of the artifacts. These findings inform the use of magnetic nanoparticle hyperthermia in engineered cellular and molecular system

    Treatment of severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19): A systematic review of in vitro, in vivo, and clinical trials

    Get PDF
    International audienceRationale: Coronavirus disease 2019 (COVID-19) has spread worldwide and poses a threat to humanity. However, no specific therapy has been established for this disease yet. We conducted a systematic review to highlight therapeutic agents that might be effective in treating COVID-19. Methods: We searched Medline, Medrxiv.org, and reference lists of relevant publications to identify articles of in vitro, in vivo, and clinical studies on treatments for severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and COVID-19 published in English until the last update on October 11, 2020. Results: We included 36 studies on SARS, 30 studies on MERS, and 10 meta-analyses on SARS and MERS in this study. Through 12,200 title and 830 full-text screenings for COVID-19, eight in vitro studies, 46 randomized controlled trials (RCTs) on 6,886 patients, and 29 meta-analyses were obtained and investigated. There was no therapeutic agent that consistently resulted in positive outcomes across SARS, MERS, and COVID-19. Remdesivir showed a therapeutic effect for COVID-19 in two RCTs involving the largest number of total participants (n = 1,461). Other therapies that showed an effect in at least two RCTs for COVID-19 were sofosbuvir/daclatasvir (n = 114), colchicine (n = 140), IFN-β1b (n = 193), and convalescent plasma therapy (n = 126). Conclusions: This review provides information to help establish treatment and research directions for COVID-19 based on currently available evidence. Further RCTs are required

    A magnetic resonance tuning sensor for the MRI detection of biological targets

    No full text
    Sensors that detect specific molecules of interest in a living organism can be useful tools for studying biological functions and diseases. Here, we provide a protocol for the construction of nanosensors that can non-invasively detect biologically important targets with magnetic resonance imaging (MRI). The key operating principle of these sensors is magnetic resonance tuning (MRET), a distance-dependent phenomenon occurring between a superparamagnetic quencher and a paramagnetic enhancer. The change in distance between the two magnetic components modulates the longitudinal (T-1) relaxivity of the enhancer. In this MRET sensor, distance variation is achieved by interactive linkers that undergo binding, cleavage, or folding/unfolding upon their interaction with target molecules. By the modular incorporation of suitable linkers, the MRET sensor can be applied to a wide range of targets. We showcase three examples of MRET sensors for enzymes, nucleic acid sequences, and pH. This protocol comprises three stages: (i) chemical synthesis and surface modification of the quencher, (ii) conjugation with interactive linkers and enhancers, and (iii) MRI sensing of biological targets. The entire procedure takes up to 3
    corecore