148 research outputs found

    Experimental study of a CoCrMo alloy treated by SMAT under rotating bending fatigue

    Get PDF
    The main objective of this work is to understand the fundamental damage mechanisms involved in a SMAT treated CoCrMo alloy subjected to fatigue under rotating bending loads. For this purpose, different load amplitudes in rotating bending are imposed on cylindrical specimens, in as-machined and SMAT states. Different material characterizations are performed in order to determine which features play an important role in fatigue life of the studied alloy. Such characterizations are done via digital microscopy, electron backscatter diffraction (EBSD), roughness measurements and microhardness tests. The fatigue results presented in the form of S-N diagram show that SMAT with a moderate intensity (SMAT-2) can enhance the fatigue performance of the CoCrMo alloy, whereas SMAT with a higher intensity (SMAT-3) seems to deteriorate it. This fatigue life decrease is probably due to surface micro-cracks generated by an over-peening phenomenon

    Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art

    Get PDF
    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed

    Lignin Nanosphere-Supported Cuprous Oxide as an Efficient Catalyst for Huisgen [3+2] Cycloadditions under Relatively Mild Conditions

    No full text
    In this work, low-cost lignin nanospheres were fabricated and further applied as an efficient and sustainable support for preparing cuprous oxide (Cu2O) “green” catalyst by using electrospraying technology. The unalloyed lignin, a special three-dimensional molecular structure, was successfully processed into uniform nanospheres under an electrospraying condition. The synthesized lignin-supported Cu2O catalyst had a well-defined nanosphere structure, and Cu2O nanoparticles with sizes less than 30 nm were supported by exposed layers of lignin nanospheres. There were C–O–Cu bonds formed between the lignin nanospheres and the metallic nanoparticles. The lignin nanospheres and the lignin nanosphere-supported catalyst werfe characterized by utilizing XRD, SEM, TEM, XPS, EDS, and TGA. The immobilization of Cu2O nanoparticles on the lignin nanospheres was beneficial for dispersion of the Cu2O nanoparticles and preventing their aggregation, which could cause catalyst deactivation, which favored the Huisgen [3+2] cycloaddition reaction. The triazole synthesis results indicated that the lignin nanosphere-supported Cu2O catalyst had a high catalytic performance with 99% yield under solvent-free conditions. Furthermore, the as-synthesized catalyst could be recycled for four times without significantly losing its catalytic activity

    Power Transmission Congestion Management Based on Quasi-Dynamic Thermal Rating

    No full text
    Transmission congestion not only increases the operation risk, but also reduces the operation efficiency of power systems. Applying a quasi-dynamic thermal rating (QDR) to the transmission congestion alarm system can effectively alleviate transmission congestion. In this paper, according to the heat balance equation under the IEEE standard, a calculation method of QDR is proposed based on the threshold of meteorological parameters under 95% confidence level, which is determined by statistical analysis of seven-year meteorological data in Weihai, China. The QDR of transmission lines is calculated at different time scales. A transmission congestion management model based on QDR is established, and the transmission congestion alarm system including conductor temperature judgment is proposed. The case shows that transmission congestion management based on QDR is feasible, which improves the service life and operation flexibility of the power grid in emergencies and avoids power supply shortages caused by unnecessary trip protection

    3D-Printed Soft Pneumatic Robotic Digit Based on Parametric Kinematic Model for Finger Action Mimicking

    No full text
    A robotic digit with shape modulation, allowing personalized and adaptable finger motions, can be used to restore finger functions after finger trauma or neurological impairment. A soft pneumatic robotic digit consisting of pneumatic bellows actuators as biomimetic artificial joints is proposed in this study to achieve specific finger motions. A parametric kinematic model is employed to describe the tip motion trajectory of the soft pneumatic robotic digit and guide the actuator parameter design (i.e., the pressure supply, actuator material properties, and structure requirements of the adopted pneumatic bellows actuators). The direct 3D printing technique is adopted in the fabrication process of the soft pneumatic robotic digit using the smart material of thermoplastic polyurethane. Each digit joint achieves different ranges of motion (ROM; bending angles of distal, proximal, and metacarpal joint are 107°, 101°, and 97°, respectively) under a low pressure of 30 kPa, which are consistent with the functional ROM of a human finger for performing daily activities. Theoretical model analysis and experiment tests are performed to validate the effectiveness of the digit parametric kinematic model, thereby providing evidence-based technical parameters for the precise control of dynamic pressure dosages to achieve the required motions

    Biomimetic Artificial Joints Based on Multi-Material Pneumatic Actuators Developed for Soft Robotic Finger Application

    No full text
    To precisely achieve a series of daily finger bending motions, a soft robotic finger corresponding to the anatomical range of each joint was designed in this study with multi-material pneumatic actuators. The actuator as a biomimetic artificial joint was developed on the basis of two composite materials of different shear modules, and the pneumatic bellows as expansion parts was restricted by frame that made from polydimethylsiloxane (PDMS). A simplified mathematical model was used for the bending mechanism description and provides guidance for the multi-material pneumatic actuator fabrication (e.g., stiffness and thickness) and structural design (e.g., cross length and chamber radius), as well as the control parameter optimization (e.g., the air pressure supply). An actuation pressure of over 70 kPa is required by the developed soft robotic finger to provide a full motion range (MCP = 36°, PIP = 114°, and DIP = 75°) for finger action mimicking. In conclusion, a multi-material pneumatic actuator was designed and developed for soft robotic finger application and theoretically and experimentally demonstrated its feasibility in finger action mimicking. This study explored the mechanical properties of the actuator and could provide evidence-based technical parameters for pneumatic robotic finger design and precise control of its dynamic air pressure dosages in mimicking actions. Thereby, the conclusion was supported by the results theoretically and experimentally, which also aligns with our aim to design and develop a multi-material pneumatic actuator as a biomimetic artificial joint for soft robotic finger application

    Application of Non-Aflatoxigenic <i>Aspergillus flavus</i> for the Biological Control of Aflatoxin Contamination in China

    No full text
    Biological control through the application of competitive non-aflatoxigenic Aspergillus flavus (A. flavus) to the soil during peanut growth is a practical method for controlling aflatoxin contamination. However, appropriate materials need to be found to reduce the cost of biocontrol products. In this study, a two-year experiment was conducted under field conditions in China, using a native non-aflatoxigenic strain to explore its effect. After three months of storage under high humidity, aflatoxin levels remained low in peanuts from fields treated with the biocontrol agent. Three types of substrates were tested with the biocontrol agent: rice grains, peanut meal (peanut meal fertilizer) and peanut coating. Compared to untreated fields, these formulations resulted in reductions of 78.23%, 67.54% and 38.48%, respectively. Furthermore, the ratios of non-aflatoxigenic A. flavus recovered in the soils at harvest in the treated fields were between 41.11% and 96.67% higher than that in untreated fields (25.00%), indicating that the rice inoculum was the most effective, followed by the peanut meal fertilizer and peanut coating. In 2019, the mean aflatoxin content of freshly harvested peanuts in untreated fields was 19.35 µg/kg higher than that in the fields treated with 7.5 kg/ha rice inoculum, which was 1.37 µg/kg. Moreover, no aflatoxin was detected in the two other plots treated with 10 and 15 kg/ha rice inoculum. This study showed that the native Chinese non-aflatoxigenic strain of A. flavus (18PAsp-zy1) had the potential to reduce aflatoxin contamination in peanuts. In addition, peanut meal can be used as an alternative substrate to replace traditional grains, reducing the cost of biocontrol products

    A Taper-in-Taper Structured Interferometric Optical Fiber Sensor for Cu2+ ion Detection

    No full text
    Copper ion is closely associated with the ecosystem and human health, and even a little excessive dose in drinking water may result in a range of health problems. However, it remains challenging to produce a highly sensitive, reliable, cost-effective and electromagnetic-interference interference-immune device to detect Cu2+ ion in drinking water. In this paper, a taper-in-taper fiber sensor was fabricated with high sensitivity by mode-mode interference and deposited polyelectrolyte layers for Cu2+ detection. We propose a new structure which forms a secondary taper in the middle of the single-mode fiber through two-arc discharge. Experimental results show that the newly developed fiber sensor possesses a sensitivity of 2741 nm/RIU in refractive index (RI), exhibits 3.7 times sensitivity enhancement when compared with traditional tapered fiber sensors. To apply this sensor in copper ions detection, the results present that when the concentration of Cu2+ is 0&ndash;0.1 mM, the sensitivity could reach 78.03 nm/mM. The taper-in-taper fiber sensor exhibits high sensitivity with good stability and mechanical strength which has great potential to be applied in the detection of low Cu2+ ions in some specific environments such as drinking water
    corecore