100 research outputs found

    Pollution and Tuberculosis: Outdoor Sources

    Get PDF

    Assessing Household Solid Fuel Use: Multiple Implications for the Millennium Development Goals

    Get PDF
    OBJECTIVE: The World Health Organization is the agency responsible for reporting the Millennium Development Goal (MDG) indicator “percentage of population using solid fuels.” In this article, we present the results of a comprehensive assessment of solid fuel use, conducted in 2005, and discuss the implications of our findings in the context of achieving the MDGs. METHODS: For 93 countries, solid fuel use data were compiled from recent national censuses or household surveys. For the 36 countries where no data were available, the indicator was modeled. For 52 upper-middle or high-income countries, the indicator was assumed to be < 5%. RESULTS: According to our assessment, 52% of the world’s population uses solid fuels. This percentage varies widely between countries and regions, ranging from 77%, 74%, and 74% in Sub-Saharan Africa, Southeast Asia, and the Western Pacific Region, respectively, to 36% in the Eastern Mediterranean Region, 16% in Latin America and the Caribbean and in Central and Eastern Europe. In most industrialized countries, solid fuel use falls to the < 5% mark. DISCUSSION: Although the “percentage of population using solid fuels” is classified as an indicator to measure progress towards MDG 7, reliance on traditional household energy practices has distinct implications for most of the MDGs, notably MDGs 4 and 5. There is an urgent need for development agendas to recognize the fundamental role that household energy plays in improving child and maternal health and fostering economic and social development

    Household Cooking with Solid Fuels Contributes to Ambient PM2.5 Air Pollution and the Burden of Disease

    Get PDF
    Approximately 2.8 billion people cook with solid fuels, and research has focused on the health impacts of household exposures to fine particulate (PM2.5). Here, as part of the 2010 Global Burden of Disease project, we evaluate the impact of household cooking with solid fuels on regional ambient PM2.5 pollution. We estimated the proportion of ambient PM2.5 (APM2.5) from PM2.5-cooking for the years 1990, 2005, and 2010 in 176 countries, and use these to estimate ambient concentrations of PM2.5 attributable to household cooking with solid fuels (PM2.5-cooking). We used an energy supply-driven emissions model (GAINS) to calculate the fraction of total household PM2.5 emissions produced by cooking with solid fuels, by country. These findings were multiplied by the proportion of total APM2.5 attributable to household emissions, as calculated with the source-receptor model TM5-FASST, to obtain the proportion of total APM2.5 from PM2.5-cooking. In 2010, the proportion of APM2.5 from PM2.5-cooking ranged from 0% of total APM2.5 in six higher-income regions, to 44% (8 ”g/m3 of 18 ”g/m3 16 total) in Southern sub-Saharan Africa. PM2.5-cooking constituted >10% of APM2.5 in eight regions with 4 billion people, with a global mean of 14%. Globally, the mean population-weighted outdoor air pollution contribution of household cooking was 4 ”g/m3 , with the highest contribution of 10 ”g/m3 in South Asia. We conclude that PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many regions, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.JRC.H.2-Air and Climat

    Implementation Science to Accelerate Clean Cooking for Public Health

    Get PDF
    Clean cooking has emerged as a major concern for global health and development because of the enormous burden of disease caused by traditional cookstoves and fires. The World Health Organization has developed new indoor air quality guidelines that few homes will be able to achieve without replacing traditional methods with modern clean cooking technologies, including fuels and stoves. However, decades of experience with improved stove programs indicate that the challenge of modernizing cooking in impoverished communities includes a complex, multi-sectoral set of problems that require implementation research. The National Institutes of Health, in partnership with several government agencies and the Global Alliance for Clean Cookstoves, has launched the Clean Cooking Implementation Science Network that aims to address this issue. In this article, our focus is on building a knowledge base to accelerate scale-up and sustained use of the cleanest technologies in low- and middle-income countries. Implementation science provides a variety of analytical and planning tools to enhance effectiveness of clinical and public health interventions. These tools are being integrated with a growing body of knowledge and new research projects to yield new methods, consensus tools, and an evidence base to accelerate improvements in health promised by the renewed agenda of clean cooking.Fil: Rosenthal, Joshua. National Institutes Of Health. Fogarty International Center; Estados UnidosFil: Balakrishnan, Kalpana. Sri Ramachandra University; IndiaFil: Bruce, Nigel. University of Liverpool; Reino UnidoFil: Chambers, David. National Institutes of Health. National Cancer Institute; Estados UnidosFil: Graham, Jay. The George Washington University; Estados UnidosFil: Jack, Darby. Columbia University; Estados UnidosFil: Kline, Lydia. National Institutes Of Health. Fogarty International Center; Estados UnidosFil: Masera, Omar Raul. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xicoFil: Mehta, Sumi. Global Alliance for Clean Cookstoves; Estados UnidosFil: Mercado, Ilse Ruiz. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xicoFil: Neta, Gila. National Institutes of Health. National Cancer Institute; Estados UnidosFil: Pattanayak, Subhrendu. University of Duke; Estados UnidosFil: Puzzolo, Elisa. Global LPG Partnership; Estados UnidosFil: Petach, Helen. U.S. Agency for International Development; Estados UnidosFil: Punturieri, Antonello. National Heart, Lung, and Blood Institute; Estados UnidosFil: Rubinstein, Adolfo Luis. Instituto de Efectividad ClĂ­nica y Sanitaria; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Sage, Michael. Centers for Disease Control and Prevention; Estados UnidosFil: Sturke, Rachel. National Institutes Of Health. Fogarty International Center; Estados UnidosFil: Shankar, Anita. University Johns Hopkins; Estados UnidosFil: Sherr, Kenny. University of Washington; Estados UnidosFil: Smith, Kirk. University of California at Berkeley; Estados UnidosFil: Yadama, Gautam. Washington University in St. Louis; Estados Unido

    Household air pollution in low- and middle-income countries: health risks and research priorities

    Get PDF
    Household air pollution (HAP), which results from incomplete combustion of the solid fuels traditionally used for cooking and heating, affects the homes of nearly 3 billion people. It is the leading environmental cause of death and disability worldwide, with highest risks for women and children due to their domestic roles. The high levels of pollutants found in HAP cause a range of diseases, in addition to burns and scalds and injuries or violence experienced during fuel collection. Additionally, household solid fuel use can pose substantive environmental risks, including degradation from fuel gathering as well as climate change from release of both CO2 and short-lived climate forcers, such as black carbon, during combustion. Despite the broad support to find solutions, only a few solid fuel interventions have shown that they might improve health over the long term, especially when implemented at the scale required (Box 1)

    Chemical Structures of 4-Oxo-Flavonoids in Relation to Inhibition of Oxidized Low-Density Lipoprotein (LDL)-Induced Vascular Endothelial Dysfunction

    Get PDF
    Vascular endothelial dysfunction induced by oxidative stress has been demonstrated to be the initiation step of atherosclerosis (AS), and flavonoids may play an important role in AS prevention and therapy. Twenty-three flavonoids categorized into flavones, flavonols, isoflavones, and flavanones, all with 4-oxo-pyronenucleus, were examined for what structural characteristics are required for the inhibitory effects on endothelial dysfunction induced by oxidized low-density lipoprotein (oxLDL). Human vascular endothelial cells EA.hy926 were pretreated with different 4-oxo-flavonoids for 2 hs, and then exposed to oxLDL for another 24 hs. Cell viability and the level of malondialdehyde (MDA), nitric oxide (NO) and soluble intercellular adhesion molecule-1 (sICAM-1) were measured, respectively. Then, correlation analysis and paired comparison were used to analyze the structure–activity relationships. Significant correlations were observed between the number of −OH moieties in total or in B-ring and the inhibitory effectson endothelial dysfunction. Furthermore, 3â€Č,4â€Č-ortho-dihydroxyl on B-ring, 3-hydroxyl on C-ring and 2,3-double bondwere correlated closely to the inhibitory effects of flavonolson cell viability decrease and lipid peroxidation. 5,7-meta-dihydroxyl group on A-ring was crucial for the anti-inflammatory effects of flavones and isoflavones in endothelial cells. Moreover, the substituted position of B-ring on C3 rather than C2 was important for NO release. Additionally, hydroxylation at C6 position significantly attenuated the inhibitory effects of 4-oxo-flavonoids on endothelial dysfunction. Our findings indicated that the effective agents in inhibiting endothelial dysfunction include myricetin, quercetin, luteolin, apigenin, genistein and daidzein. Our work might provide some evidence for AS prevention and a strategy for the design of novel AS preventive agents

    BMP-2/6 Heterodimer Is More Effective than BMP-2 or BMP-6 Homodimers as Inductor of Differentiation of Human Embryonic Stem Cells

    Get PDF
    Bone Morphogenetic Protein (BMP) signaling pathways are involved in differentiation of stem cells into diverse cell types, and thus BMPs can be used as main guidance molecules for in vitro differentiation of human stem cells.We have analyzed the ability for inducing differentiation of the heterodimer BMP-2/BMP-6 (BMP-2/6) compared to the homodimers BMP-2 or BMP-6, using human embryonic stem (hES) cells H9 as model system. When incubated in a medium with high concentration of basic fibroblastic growth factor (FGF2), 100 ng/ml of human recombinant BMPs induced morphological changes and differentiation of hES cells in 24 to 48 hours. After 5 days, expression of differentiation markers was induced and quantified by quantitative PCR (qPCR) and flow cytometry. BMP-2/6 exhibited stronger activity for the induction of the expression of trophectodermal (CDX2) and endodermal (SOX17, GATA4, AFP) markers than BMP-2 or BMP-6 homodimers. BMP-2/6 also induced the expression of BMPR2 gene more effectively than BMP-2 or BMP-6 when used at the same concentration and time. Moreover, the percentage of cells expressing the surface endodermal marker CXCR4 was also increased for the heterodimer when compared to both homodimers. BMP-2/6 was a more potent activator of Smad-dependent (SMAD1/5) and Smad-independent signaling (mitogen-activated protein kinases ERK and p38) than BMP-2 and BMP-6, and the activation of these pathways might play a role in its increased potency for inducing hES cell differentiation.Therefore, we conclude that BMP-2/6 is more potent than BMP-2 or BMP-6 for inducing differentiation of hES cells, and it can be used as a more powerful substitute of these BMPs in in vitro differentiation guidance
    • 

    corecore