6 research outputs found

    JAMI: a Java library for molecular interactions and data interoperability.

    Get PDF
    BACKGROUND: A number of different molecular interactions data download formats now exist, designed to allow access to these valuable data by diverse user groups. These formats include the PSI-XML and MITAB standard interchange formats developed by Molecular Interaction workgroup of the HUPO-PSI in addition to other, use-specific downloads produced by other resources. The onus is currently on the user to ensure that a piece of software is capable of read/writing all necessary versions of each format. This problem may increase, as data providers strive to meet ever more sophisticated user demands and data types. RESULTS: A collaboration between EMBL-EBI and the University of Cambridge has produced JAMI, a single library to unify standard molecular interaction data formats such as PSI-MI XML and PSI-MITAB. The JAMI free, open-source library enables the development of molecular interaction computational tools and pipelines without the need to produce different versions of software to read different versions of the data formats. CONCLUSION: Software and tools developed on top of the JAMI framework are able to integrate and support both PSI-MI XML and PSI-MITAB. The use of JAMI avoids the requirement to chain conversions between formats in order to reach a desired output format and prevents code and unit test duplication as the code becomes more modular. JAMI's model interfaces are abstracted from the underlying format, hiding the complexity and requirements of each data format from developers using JAMI as a library

    Encompassing new use cases - level 3.0 of the HUPO-PSI format for molecular interactions.

    Get PDF
    BACKGROUND: Systems biologists study interaction data to understand the behaviour of whole cell systems, and their environment, at a molecular level. In order to effectively achieve this goal, it is critical that researchers have high quality interaction datasets available to them, in a standard data format, and also a suite of tools with which to analyse such data and form experimentally testable hypotheses from them. The PSI-MI XML standard interchange format was initially published in 2004, and expanded in 2007 to enable the download and interchange of molecular interaction data. PSI-XML2.5 was designed to describe experimental data and to date has fulfilled this basic requirement. However, new use cases have arisen that the format cannot properly accommodate. These include data abstracted from more than one publication such as allosteric/cooperative interactions and protein complexes, dynamic interactions and the need to link kinetic and affinity data to specific mutational changes. RESULTS: The Molecular Interaction workgroup of the HUPO-PSI has extended the existing, well-used XML interchange format for molecular interaction data to meet new use cases and enable the capture of new data types, following extensive community consultation. PSI-MI XML3.0 expands the capabilities of the format beyond simple experimental data, with a concomitant update of the tool suite which serves this format. The format has been implemented by key data producers such as the International Molecular Exchange (IMEx) Consortium of protein interaction databases and the Complex Portal. CONCLUSIONS: PSI-MI XML3.0 has been developed by the data producers, data users, tool developers and database providers who constitute the PSI-MI workgroup. This group now actively supports PSI-MI XML2.5 as the main interchange format for experimental data, PSI-MI XML3.0 which additionally handles more complex data types, and the simpler, tab-delimited MITAB2.5, 2.6 and 2.7 for rapid parsing and download

    Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression

    Get PDF
    International audienceThe hypothesis that the S allele of the 5-HTTLPR serotonin transporter promoter region is associated with increased risk of depression, but only in individuals exposed to stressful situations, has generated much interest, research and controversy since first proposed in 2003. Multiple meta-analyses combining results from heterogeneous analyses have not settled the issue. To determine the magnitude of the interaction and the conditions under which it might be observed, we performed new analyses on 31 data sets containing 38 802 European ancestry subjects genotyped for 5-HTTLPR and assessed for depression and childhood maltreatment or other stressful life events, and meta-analysed the results. Analyses targeted two stressors (narrow, broad) and two depression outcomes (current, lifetime). All groups that published on this topic prior to the initiation of our study and met the assessment and sample size criteria were invited to participate. Additional groups, identified by consortium members or self-identified in response to our protocol (published prior to the start of analysis) with qualifying unpublished data, were also invited to participate. A uniform data analysis script implementing the protocol was executed by each of the consortium members. Our findings do not support the interaction hypothesis. We found no subgroups or variable definitions for which an interaction between stress and 5-HTTLPR genotype was statistically significant. In contrast, our findings for the main effects of life stressors (strong risk factor) and 5-HTTLPR genotype (no impact on risk) are strikingly consistent across our contributing studies, the original study reporting the interaction and subsequent meta-analyses. Our conclusion is that if an interaction exists in which the S allele of 5-HTTLPR increases risk of depression only in stressed individuals, then it is not broadly generalisable, but must be of modest effect size and only observable in limited situations

    Rationale, design, implementation, and baseline characteristics of patients in the DIG trial: A large, simple, long-term trial to evaluate the effect of digitalis on mortality in heart failure

    No full text
    This article provides a detailed overview of the rationale for key aspects of the protocol of the Digitalis Investigation Group (DIG) trial. It also highlights unusual aspects of the study implementation and the baseline characteristics. The DIG trial is a large, simple, international placebo-controlled trial whose primary objective is to determine the effect of digoxin on all cause mortality in patients with clinical heart failure who are in sinus rhythm and whose ejection fraction is less than or equal to 0.45. An ancillary study examines the effect in those with an ejection fraction > 0.45. Key aspects of the trial include the simplicity of the design, broad eligibility criteria, essential data collection, and inclusion of various types of centers. A total of 302 centers in the United States and Canada enrolled 7788 patients between February 1991 and September 1993. Follow-up continued until December 1995 with the results available in Spring 1996
    corecore