1,337 research outputs found
Wall-crossing, open BPS counting and matrix models
We consider wall-crossing phenomena associated to the counting of D2-branes
attached to D4-branes wrapping lagrangian cycles in Calabi-Yau manifolds, both
from M-theory and matrix model perspective. Firstly, from M-theory viewpoint,
we review that open BPS generating functions in various chambers are given by a
restriction of the modulus square of the open topological string partition
functions. Secondly, we show that these BPS generating functions can be
identified with integrands of matrix models, which naturally arise in the free
fermion formulation of corresponding crystal models. A parameter specifying a
choice of an open BPS chamber has a natural, geometric interpretation in the
crystal model. These results extend previously known relations between open
topological string amplitudes and matrix models to include chamber dependence.Comment: 25 pages, 8 figures, published versio
Shaking Stakeholders to Leverage a Firm’s Unique Capacity in Issue Networks
Firms are often seen to react to stakeholder pressure. However, if one changes the unit of analysis to a social or environmental issue, a firm emerges as a key influencer in mobilizing and connecting other stakeholders. For a variety of reasons, including the firm’s raison d’etre of creating value, a firm may be a critical leader or lynchpin in a movement, especially where it bridges gaps in a previously disconnected network. Two previously underappreciated aspects of stakeholder ties are highlighted in this paper. First, the firm can be seen as shaking otherwise latent stakeholders out of complacency, inasmuch as a firm informs and stimulates concerns, emotions, and actions among stakeholders in relation to a particular issue. Second, the firm can be seen as shaking-up the connections between stakeholders, catalyzing new contacts and relationships within an issue network
The Extravehicular Suit Impact Load Attenuation Study for Use in Astronaut Bone Fracture Prediction
The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fracture of the proximal femur is a traumatic injury that would likely result in loss of mission if it were to happen during spaceflight. The low gravity exposure causes decreases in bone mineral density which heightens the concern. Researchers at the NASA Glenn Research Center have quantified bone fracture probability during spaceflight with a probabilistic model. It was assumed that a pressurized extravehicular activity (EVA) suit would attenuate load during a fall, but no supporting data was available. The suit impact load attenuation study was performed to collect analogous data. METHODS: A pressurized EVA suit analog test bed was used to study how the offset, defined as the gap between the suit and the astronaut s body, impact load magnitude and suit operating pressure affects the attenuation of impact load. The attenuation data was incorporated into the probabilistic model of bone fracture as a function of these factors, replacing a load attenuation value based on commercial hip protectors. RESULTS: Load attenuation was more dependent on offset than on pressurization or load magnitude, especially at small offsets. Load attenuation factors for offsets between 0.1 - 1.5 cm were 0.69 +/- 0.15, 0.49 +/- 0.22 and 0.35 +/- 0.18 for mean impact forces of 4827, 6400 and 8467 N, respectively. Load attenuation factors for offsets of 2.8 - 5.3 cm were 0.93 +/- 0.2, 0.94 +/- 0.1 and 0.84 +/- 0.5, for the same mean impact forces. Reductions were observed in the 95th percentile confidence interval of the bone fracture probability predictions. CONCLUSIONS: The reduction in uncertainty and improved confidence in bone fracture predictions increased the fidelity and credibility of the fracture risk model and its benefit to mission design and operational decisions
Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: possible role of obesity-related stimuli
PURPOSE: Recent in vitro studies suggested that the autocrine leptin loop might contribute to breast cancer development by enhancing cell growth and survival. To evaluate whether the leptin system could become a target in breast cancer therapy, we examined the expression of leptin and its receptor (ObR) in primary and metastatic breast cancer and noncancer mammary epithelium. We also studied whether the expression of leptin/ObR in breast cancer can be induced by obesity-related stimuli, such as elevated levels of insulin, insulin-like growth factor-I (IGF-I), estradiol, or hypoxic conditions.
EXPERIMENTAL DESIGN: The expression of leptin and ObR was examined by immunohistochemistry in 148 primary breast cancers and 66 breast cancer metastases as well as in 90 benign mammary lesions. The effects of insulin, IGF-I, estradiol, and hypoxia on leptin and ObR mRNA expression were assessed by reverse transcription-PCR in MCF-7 and MDA-MB-231 breast cancer cell lines.
RESULTS: Leptin and ObR were significantly overexpressed in primary and metastatic breast cancer relative to noncancer tissues. In primary tumors, leptin positively correlated with ObR, and both biomarkers were most abundant in G3 tumors. The expression of leptin mRNA was enhanced by insulin and hypoxia in MCF-7 and MDA-MB-231 cells, whereas IGF-I and estradiol stimulated leptin mRNA only in MCF-7 cells. ObR mRNA was induced by insulin, IGF-I, and estradiol in MCF-7 cells and by insulin and hypoxia in MDA-MB-231 cells.
CONCLUSIONS: Leptin and ObR are overexpressed in breast cancer, possibly due to hypoxia and/or overexposure of cells to insulin, IGF-I, and/or estradiol
KnotProt: a database of proteins with knots and slipknots.
The protein topology database KnotProt, http://knotprot.cent.uw.edu.pl/, collects information about protein structures with open polypeptide chains forming knots or slipknots. The knotting complexity of the cataloged proteins is presented in the form of a matrix diagram that shows users the knot type of the entire polypeptide chain and of each of its subchains. The pattern visible in the matrix gives the knotting fingerprint of a given protein and permits users to determine, for example, the minimal length of the knotted regions (knot's core size) or the depth of a knot, i.e. how many amino acids can be removed from either end of the cataloged protein structure before converting it from a knot to a different type of knot. In addition, the database presents extensive information about the biological functions, families and fold types of proteins with non-trivial knotting. As an additional feature, the KnotProt database enables users to submit protein or polymer chains and generate their knotting fingerprints
Multiple D4-D2-D0 on the Conifold and Wall-crossing with the Flop
We study the wall-crossing phenomena of D4-D2-D0 bound states with two units
of D4-brane charge on the resolved conifold. We identify the walls of marginal
stability and evaluate the discrete changes of the BPS indices by using the
Kontsevich-Soibelman wall-crossing formula. In particular, we find that the
field theories on D4-branes in two large radius limits are properly connected
by the wall-crossings involving the flop transition of the conifold. We also
find that in one of the large radius limits there are stable bound states of
two D4-D2-D0 fragments.Comment: 24 pages, 4 figures; v2: typos corrected, minor changes, a reference
adde
Penner Type Matrix Model and Seiberg-Witten Theory
We discuss the Penner type matrix model recently proposed by Dijkgraaf and
Vafa for a possible explanation of the relation between four-dimensional gauge
theory and Liouville theory by making use of the connection of the matrix model
to two-dimensional CFT. We first consider the relation of gauge couplings
defined in UV and IR regimes of N_f = 4, N = 2 supersymmetric gauge theory
being related as . We then use this relation to discuss the action of modular
transformation on the matrix model and determine its spectral curve.
We also discuss the decoupling of massive flavors from the N_f = 4 matrix
model and derive matrix models describing asymptotically free N = 2 gauge
theories. We find that the Penner type matrix theory reproduces correctly the
standard results of N = 2 supersymmetric gauge theories.Comment: 22 pages; v2: references added, typos corrected; v3: a version to
appear in JHE
ABJM theory as a Fermi gas
The partition function on the three-sphere of many supersymmetric
Chern-Simons-matter theories reduces, by localization, to a matrix model. We
develop a new method to study these models in the M-theory limit, but at all
orders in the 1/N expansion. The method is based on reformulating the matrix
model as the partition function of an ideal Fermi gas with a non-trivial,
one-particle quantum Hamiltonian. This new approach leads to a completely
elementary derivation of the N^{3/2} behavior for ABJM theory and N=3 quiver
Chern-Simons-matter theories. In addition, the full series of 1/N corrections
to the original matrix integral can be simply determined by a next-to-leading
calculation in the WKB or semiclassical expansion of the quantum gas, and we
show that, for several quiver Chern-Simons-matter theories, it is given by an
Airy function. This generalizes a recent result of Fuji, Hirano and Moriyama
for ABJM theory. It turns out that the semiclassical expansion of the Fermi gas
corresponds to a strong coupling expansion in type IIA theory, and it is dual
to the genus expansion. This allows us to calculate explicitly non-perturbative
effects due to D2-brane instantons in the AdS background.Comment: 52 pages, 11 figures. v3: references, corrections and clarifications
added, plus a footnote on the relation to the recent work by Hanada et a
- …
