
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Wall-crossing, open BPS counting and matrix models

Sulkowski, P.

Publication date
2010
Document Version
Submitted manuscript

Link to publication

Citation for published version (APA):
Sulkowski, P. (2010). Wall-crossing, open BPS counting and matrix models. arXiv.org.
https://arxiv.org/abs/1011.5269

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:08 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/wallcrossing-open-bps-counting-and-matrix-models(7366d318-70b7-4bdb-9447-a1134a5eeca5).html
https://arxiv.org/abs/1011.5269


ar
X

iv
:1

01
1.

52
69

v2
  [

he
p-

th
] 

 2
5 

A
ug

 2
01

1

CALT-68-2806

Wall-crossing, open BPS counting and matrix models

Piotr Sułkowski1

California Institute of Technology, Pasadena, CA 91125, USA

Abstract

We consider wall-crossing phenomena associated to the counting of D2-branes attached

to D4-branes wrapping lagrangian cycles in Calabi-Yau manifolds, both from M-theory

and matrix model perspective. Firstly, from M-theory viewpoint, we review that open

BPS generating functions in various chambers are given by a restriction of the modulus

square of the open topological string partition functions. Secondly, we show that these

BPS generating functions can be identified with integrands of matrix models, which nat-

urally arise in the free fermion formulation of corresponding crystal models. A parameter

specifying a choice of an open BPS chamber has a natural, geometric interpretation in the

crystal model. These results extend previously known relations between open topological

string amplitudes and matrix models to include chamber dependence.

1On leave from University of Amsterdam and Sołtan Institute for Nuclear Studies, Poland.
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1 Introduction

Recently much progress has been achieved in, at first sight distinct, fields of topological

strings, BPS counting, and matrix models. Also non-trivial connections between these

fields have been understood. Relations between topological strings, either closed or open,

and BPS counting have been known since the works of Gopakumar-Vafa and Ooguri-Vafa

[1, 2, 3]. However these relations gained new interests in view of recent results concerning

stability of BPS states and associated wall-crossing phenomena [4, 5]. Among various

systems undergoing these phenomena, it is especially advantageous to understand details

of those which are exactly solvable. One class of such systems, which we also analyze in this

paper, involves string theory on toric Calabi-Yau manifolds (more precisely, those which

contain no compact four-cycles, as we will explain in what follows). This class has been

studied both from physical [6, 7, 8, 9, 10] and mathematical [11, 12, 13, 14, 15] points of

view. Physically it concerns the counting of bound states of D0 and D2 branes, wrapping

cycles of such toric manifolds, to a single D6-brane. In what follows we refer to such bound

states as closed BPS states, and dependence of their generating functions on the moduli

of the manifold is a manifestation of the wall-crossing. These results and their relation to

topological string theory were explained from the M-theory perspective in [16].

Another interesting series of developments relates topological string theory to matrix

models. Such ideas date back to the Dijkgraaf-Vafa conjecture [17] on one hand, and

on the other to the fermionic interpretation of topological strings on toric manifolds [18].

Recently those connections gained new impact due to Eynard-Orantin solution of matrix

models [19] and the idea of remodeling the B-model topological strings along such lines

[20].

The above relations motivate a question if there is some direct relation between BPS

counting and matrix models, which would take into account wall-crossing phenomena.

The affirmative answer to this question was given in [21], where a construction of relevant

matrix models was provided, based on crystal melting [9, 10, 15] as well as non-intersecting

paths [22] interpretations of BPS invariants.

The results of [21] were derived from the viewpoint of relations to closed topological

strings. On the other hand, the appearance of matrix models in [17] or [18] was inher-

ently related to topological branes and open topological strings. In particular, potentials

of these matrix models were related to brane amplitudes, which one might think of as

being integrated out to provide closed string amplitudes. In this paper we reveal similar
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connection between open topological strings and matrix models arising in the context of

BPS counting. Our strategy is as follows. From string perspective we consider a similar

system of D6-D2-D0 branes as above, which in addition includes D4-brane wrapping a

lagrangian cycle in Calabi-Yau. In this context we are interested in generating functions of

D2-branes with boundaries ending on this additional D4-brane, which we refer to as open

BPS states. Firstly, we review that generating functions of these open BPS states can

also be expressed in terms of open topological string amplitudes [23] (these results were

found independently in [24]), and stress modular properties of these generating functions

in a certain chamber. Then we construct matrix models, generalizing those of [21], whose

integrands can be identified with generating functions of such open BPS states. The ma-

trix integral itself relates these open BPS generating functions in some geometry X, to the

closed topological string generating functions in more general geometry Y , which is a rem-

iniscent of integrating brane amplitudes in the pure topological string context [18]. Among

the others, this viewpoint sheds some light on the appearance of a non-trivial prefactor in

[21].

It would be interesting to extend our results in various directions. A generalization to

the refined BPS counting is presented in [25]. It would be interesting to include more gen-

eral open BPS states (e.g. associated to several branes), understand framing dependence

in general chamber, understand better a role of the more general geometry Y , consider

more general geometries and crystal models such as those analyzed in [26], etc. We note

that some other approaches to wall-crossing phenomena for open BPS states were also

considered in literature. Related constructions of matrix models representing counting of

closed BPS states in commutative and non-commutative chambers were introduced in [27].

Our results identify a chamber for which some particular BPS states were introduced in

[28, 29]. BPS generating functions similar to ours have been found in a system of closed

D4-D2-D0 branes in [30]. Relation between BPS counting and lagrangian branes was also

analyzed in [31]. In the context of open topological string theory and the commutative

chamber, related connections between branes, crystals and matrix models were discussed

in [32, 33, 34, 35].

The plan of the paper is as follows. In section 2 we explain how generating functions

of open BPS states arise from M-theory perspective [23]. In section 3 we discuss how to

encode generating functions of open BPS states in matrix models generalizing those of [21].

In section 4 we present how this identification works in several examples of toric manifolds

without compact four-cycles, and discuss other aspects of our results.
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2 From closed to open BPS counting

In this section we review the relation between BPS counting, M-theory and topological

strings. Starting from the counting closed BPS states [16], we review how to extend it to

the case of open BPS states [23] (see also [24]).

To start with, we briefly recall the results of [16], which considered a system of D2 and

D0-branes bound to a single D6-brane in type IIA string theory. When this system is lifted

to M-theory on S1 following [36], the D6-brane transforms into a geometric background of

a Taub-NUT space with unit charge, which extends in directions transverse to the original

D6-brane. This Taub-NUT space is a circle S1
TN fibration over R3, with S1

TN of fixed

radius R at infinity and shrinking to a point in the location of the D6-brane. From this

perspective the counting of original bound states to the D6-brane is reinterpreted as the

counting of BPS states of M2-branes in the Taub-NUT space. When the radius R grows to

infinity the counting does not change and ultimately can be reinterpreted in terms of a gas

of free, non-interacting particles in R5, as long as the following two conditions are satisfied.

Firstly, to avoid creation of string states arising from M5-branes wrapping four-cycles in

Calabi-Yau, we simply restrict considerations to manifolds without compact four-cycles.

Secondly, the moduli of the Calabi-Yau have to be tuned so that M2-branes wrapped in

various ways have aligned central charges. This is achieved by considering vanishing Kähler

parameters of the Calabi-Yau space, and to avoid generation of massless states, non-trivial

fluxes of the M-theory three-form field through the two-cycles of the Calabi-Yau and S1
TN

should be turned on. In type IIA this results in the B-field flux B through two-cycles of

Calabi-Yau. For a state arising from D2-brane wrapping a class β the central charge then

reads

Z(l, β) =
1

R
(l +B · β), (1)

where l counts the D0-brane charge, which is taken positive to preserve the same super-

symmetry.

Under the above conditions, the counting of D6-D2-D0 bound states is reinterpreted in

terms of a gas of particles arising from M2-branes wrapped on cycles β. The excitations of

these particles in R4, parametrized by two complex variables z1, z2, are accounted for by

the modes of the holomorphic field

Φ(z1, z2) =
∑

l1,l2

αl1,l2z
l1
1 z

l2
2 . (2)

Decomposing the isometry group of R4 as SO(4) = SU(2)× SU(2)′ there are Nm,m′

β five-
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dimensional BPS states of intrinsic spin (m,m′). We are interested in their net number

arising from tracing over SU(2)′ spins

Nm
β =

∑

m′

(−1)m
′

Nm,m′

β .

The total angular momentum of a given state contributing to the index is l = l1 + l2 +m.

Finally, in a chamber specified by the moduli R and B, the invariant degeneracies can be

expressed as the trace over the corresponding Fock space

ZBPS =
(
TrFockq

Q0QQ2

)
|chamber =

=
∏

β,m

∏

l1+l2=l

(1− ql1+l2+mQβ)N
m
β |chamber

=
∏

β,m

∞∏

l=1

(1− ql+mQβ)lN
m
β |chamber, (3)

where the subscript chamber denotes restriction to those factors in the above product,

which represent states which are mutually BPS

Z(l, β) > 0 ⇔ ql+mQβ < 1. (4)

As usual, Q = e−t and q = e−gs above encode respectively the Kähler class t and the string

coupling gs (we again stress that here we consider a particular class of BPS states with

non-zero B-field, and vanishing real component of t). We note that if we would restrict

products in the formula (3) to factors with only positive β we would get (up to possibly

some factor of MacMahon function) the Gopakumar-Vafa representation of the topological

string amplitude. With all negative and positive values of β we would get modulus square

of the topological string partition function. Therefore the upshot of [16] is that in general

the above BPS generating function can be expressed in terms of the closed topological

string partition function

ZBPS = Ztop(Q)Ztop(Q
−1)|chamber, (5)

where chamber restriction is to be understood as picking up only those factors in

Gopakumar-Vafa product representation of Ztop for which (4) is satisfied. In this context

we will often refer to the choice of a chamber as a closed BPS chamber. The (instanton

part of the) closed topological string partition function entering the above expression is

given by [1, 2]

Ztop(Q) = M(q)χ/2
∞∏

l=1

∏

β>0,m

(1−Qβqm+l)lN
m
β ,
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where M(q) =
∏

l(1− ql)−l is the MacMahon function and χ is the Euler characteristic of

the Calabi-Yau manifold.

The above structure can be generalized by including in the initial D6-D2-D0 configura-

tion additional D4-branes wrapping lagrangian cycles in the internal Calabi-Yau manifold

and extending in two space-time dimensions [3, 37]. For simplicity we consider a system

with a single D4-brane wrapping a lagrangian cycle. There are now additional BPS states

in two dimensions arising from open D2-branes ending on these D4-branes. Their net de-

generacies Ns,β,γ are characterized, firstly, by the SO(2) spin s whose origin is most clearly

seen from the M-theory perspective [3, 38]. Secondly, they depend on two-cycles β wrapped

by open M2-branes, as well as one-cycles γ on which these M2-branes can end. (In case of

N D4-branes wrapping the same lagrangian cycle, these states would additionally arise in

representations R of U(N) [3]. In case of a single brane this reduces to U(1), and such a

dependence can be reabsorbed into a parameter specifying a choice of γ.)

Lifting this system to M-theory we obtain a background of TN1 × Calabi-Yau × S1,

with the additional D4-brane promoted to M5-brane. This M5-brane wraps the lagrangian

L inside Calabi-Yau, the time circle S1, and R+ × S1
TN inside the Taub-NUT space. In

particular it wraps a torus T 2 = S1
TN × S1, and therefore we expect to find interesting

modular properties of the BPS counting functions. As we will see, the modularity will be

manifest in one chamber, where the open topological string amplitude will be completed to

the product of θ functions. This M5-brane also breaks the SO(4) spatial symmetry down

to SO(2)×SO(2)′. We denote the spins associated to both SO(2) factors respectively by s

and s′, and the degeneracies of particles with such spins by N s,s′

β,γ . Let us moreover introduce

closed Kähler parameters Q = e−t, as well as open ones related to discs wrapped by M2-

branes z = e−d. The real and imaginary parts of t encode respectively the sizes of two-cycles

β and the value of the B-field through them. The real and imaginary parts of d encode

respectively sizes of the discs and holonomies of the gauge fields around them. Similarly

as in the closed string case, to get non-trivial ensemble of mutually supersymmetric states,

we set the real parts of t and d to zero, and consider non-trivial imaginary parts.

From the M-theory perspective we are interested in counting the net degeneracies of

M2-branes ending on this M5-brane

Ns,β,γ =
∑

s′

(−1)s
′

N s,s′

β,γ .

In the remaining three-dimensional space, in the R → ∞ limit, the M2-branes ending on

the M5-brane are represented by a gas of free particles. These particles have excitations
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in R2 which we identify with the z1-plane. To each such BPS particle, similarly as in the

closed string case [16, 36], we can associate a holomorphic field

Φ(z1) =
∑

l

αlz
l
1. (6)

The modes of this field create states with the intrinsic spin s and the orbital momentum l

in the R
2 plane. The derivation of the BPS degeneracies relies on the identification of this

total momentum s+ l in the R → ∞ limit, with the Kaluza-Klein modes associated to the

rotations along S1
TN for the finite R, analogously as in the five-dimensional case discussed

in [36, 39].

The BPS generating functions we are after are given by a trace over the Fock space built

by the oscillators of the second quantized field Φ(z1), and restricted to the states which are

mutually supersymmetric. In such a trace each oscillator from (6) gives rise to one factor

of the form (1 − qs+l−1/2Qβzγ)±1, where the exponent ±1 corresponds to the bosonic or

fermionic character of the top component of the BPS state. This can be expressed in the

CFT language, with D0-branes coupled to L0 and D2-branes coupled to the currents Jβ
0

and Jγ
0 , so that we get

Zopen
BPS =

(
Tr Fock q

L0QJβ
0 zJ

γ
0

)
|chamber =

=
∏

s,β,γ

∞∏

l=1

(1− qs+l−1/2Qβzγ)Ns,β,γ |chamber, (7)

where the product is over either both positive or both negative (β, γ). The parameters q, Q

and z specify the chamber structure: the restriction to a given chamber is implemented

by imposing the condition on a central charge, analogous to (4),

qs+l−1/2Qβzγ < 1. (8)

More precisely, this condition specifies a choice of both closed and open chambers. The

walls of marginal stability between chambers correspond to subspaces where, for some

oscillator, the above product becomes 1, and then the contribution from such an oscillator

drops out from the BPS generating function. We note that in (7) there is a product only

over positive l, which from CFT perspective corresponds to the restriction to states with

positive energy L0 > 0, or equivalently qL0 < 1. From this viewpoint, the condition (8) can

be understood similarly, as an additional restriction to states with the redefined energy

L̃0 > 0.
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Similarly as in the closed string case, the above degeneracies can be related to open

topological string amplitudes. It was shown in [3] that the open topological string ampli-

tude can be written as

Zopen
top = exp

( ∞∑

n=1

∑

s

∑

β,γ>0

Ns,β,γ
qnsQnβznγ

n(qn/2 − q−n/2)

)
,

with integral invariants Ns,β,γ. In case of N D4-branes wrapping a lagrangian cycle this

structure is more involved, as the states in R3 arise also in representations of U(N) [3],

and therefore the factor znγ is replaced by the sum
∑

R TrRV
n of traces in all possible

representations R of this U(N) of the matrix V encoding holonomies of the gauge fields

around discs. This structure can be refined even further, by considering several distinct

lagrangian submanifolds wrapped by arbitrary number of D4-branes.

The above formula for this open string partition function, as also stressed in [31], has

essentially a structure of the quantum dilogarithm

L(z, q) = exp
(∑

n>0

zn

n(qn/2 − q−n/2)

)
=

∞∏

n=1

(1− zqn−1/2), (9)

and therefore can be written in the product form

Zopen
top (Q, z) =

∏

s

∏

β,γ>0

∞∏

n=1

(
1−Qβzγqs+n−1/2

)Ns,β,γ

.

Comparing with (7) we conclude that the BPS counting functions take form of the modulus

square of the open topological string amplitude

Zopen
BPS = Zopen

top (Q, z)Zopen
top (Q−1, z−1) |chamber. (10)

In particular, in the extreme chamber corresponding to Im t, Im d → 0, the trace is

performed over the full Fock space and yields the modulus square of the open topological

string partition function. In this case the quantum dilogarithms are completed, via the

Jacobi triple product identity, to the modular function θ3/η, and therefore the overall BPS

generating function is also modular and expressed as a product of such functions.

3 Generating functions from matrix models

In this section we show that generating functions of open BPS states found in (7) are

encoded in the structure of suitably constructed matrix models. Matrix models encoding
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degeneracies of closed BPS states have been found in [21]. Here we show how to generalize

this picture to capture the counting of open BPS states. More precisely, we find that

generating functions of open states found in (7) can be identified with integrands e−
1

gs
V (z)

of matrix models constructed from the associated crystal models.

Figure 1: Toric geometries without compact four-cycles which we consider, with

Kähler parameters Qi and vertices of type ti = ±1, chosen so that titi+1 = ±1

respectively for C3/Z2-like and conifold-like local neighborhood of Qi.

To start with we recall one strategy presented in [21], which is based on writing gen-

erating functions of closed BPS states as fermionic correlators [10]. Following conventions

of [10], these correlators read

Zn ≡ 〈Ω+|W
n
|Ω−〉 = ZBPS, (11)

where |Ω±〉 are Bogoliubov states of the form

|Ω−〉 = A−(1)A−(1)A−(1) . . . |0〉

and 〈Ω+| are defined analogously. The structure of a given toric manifold, shown in figure

1, is encoded in operators A±(1), which are given as products of vertex operators2 Γti
±

associated to each vertex (of type ti = ±1, so that titi+1 = ±1 respectively for C3/Z2-like

and conifold-like local neighborhood of Qi) in a toric diagram, and weighted by Q̂i (related

2In our conventions, these vertex operators satisfy the relations: Γti
+(x)Γ

tj
−(y) = (1 −

titj)
−titjΓ

tj
−(y)Γti

+(x), Γti
+(x)Q̂k = Q̂kΓ

ti
+(xqk), Q̂kΓ

ti
−(x) = Γti

−(xqk)Q̂k. We also denote Γ
(+1)
± ≡ Γ±

and Γ
(−1)
± ≡ Γ′

±.
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to the coloring qi of a given partition Q̂i|λ〉 = q
|λ|
i |λ〉, and encoding appropriate Kähler

parameter Qi)

A±(x) = Γt1
±(x)Q̂1Γ

t2
±(x)Q̂2 · · ·Γ

tN
± (x)Q̂NΓ

tN+1

± (x)Q̂0. (12)

Operators W
n

encode information about a given chamber, labeled by n (which is in gen-

eral N -component vector). While most general choice of chamber, for arbitrary manifold

without compact four-cycles, requires considering quite involved W
n

operators [15], for

simplicity in what follows we focus on a simple class of examples where only a single Käh-

ler parameter undergoes wall-crossing. In this case, the operator W
n

is indeed the n’th

power of W (and the integer n denotes the number of walls between the given and the

non-commutative chamber), and its structure, similar to A±(1), we write down explicitly

in particular examples below.

Let us illustrate how the above formalism works in the simplest example of C3 geometry.

A toric diagram in this case consists of a single toric vertex, by convention chosen to be

of t1 = +1 type (so that a general strip geometry in fig. 1 reduces to a single, left-most

vertex). Therefore the operators (12) take a simple form A±(x) = Γ±(x)Q̂0, and the state

associated to the manifold takes form

|Ω−〉 = Γ−(1)Q̂0Γ−(1)Q̂0 . . . |0〉 =

∞∏

k=0

Γ−(q
k)|0〉,

and similarly for 〈Ω+|. Here we commuted all Q̂0 operators to the right using relations

given in the footnote below, and we identified q = q0 as the eigenvalue of Q̂0. As there are

no Kähler parameters in this case, there are also no wall-crossing operators, and the only

non-trivial chamber corresponds to n = 0 in (11). Therefore the BPS generating function

is given by the MacMahon function

Z0 = 〈Ω+|Ω−〉 = 〈0|
( ∞∏

i=1

Γ+(q
i)
)( ∞∏

k=0

Γ−(q
k)
)
|0〉 =

∞∏

i,k=0

1

1− qi+k+1
= M(1),

and in the computation we used commutation relations between Γ± operators also pre-

sented in the footnote below. More complicated examples are explained at length in [10],

and we will also discuss them in what follows.

A derivation of matrix models in [21] relied on introducing into the correlator (11)

the identity operator I, represented by the complete set of states |R〉〈R|. These states

represent two-dimensional partitions. Using orthogonality relations of U(∞) characters
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χR, and the fact that these characters are given in terms of Schur functions χR = sR(~z)

for ~z = (z1, z2, z3, . . .), we can write

I =
∑

R

|R〉〈R| =
∑

P,R

δP tRt |P 〉〈R| =

=

∫
DU

∑

P,R

sP t(~z)sRt(~z)|P 〉〈R| =

=

∫
DU

(∏

α

Γ′
−(zα)|0〉

)(
〈0|

∏

α

Γ′
+(z

−1
α )

)
, (13)

where D denotes the unitary measure whose eigenvalues representation is

DU =
∏

α

duα

∏

α<β

|zα − zβ |
2, zα = eiuα.

Having inserted the identity operator in this form into (11) we can commute away Γti
±

operators and get rid of operator expressions. This leads to a matrix model with the

unitary measure

Zn = fn(q, Qi)

∫
DU

∏

α

e−
1

gs
V (zα), (14)

where the product over α represents distinct eigenvalues zα. For generic chambers we find

some overall factors fn(q, Qi). These factors, in generic chamber, arise from commuta-

tions between certain Γ± components of wall-crossing operators, and Γ∓ components of

|Ω∓〉 states, and take form of relatively simple infinite products. Importantly, these fac-

tors do not depend on parameters labeling open chambers – in this sense matrix model

indeed encodes open chamber dependence, as we discuss below. Moreover, in the non-

commutative chamber these factors reduce to fn=0(q, Qi) = 1, and they largely simplify in

the commutative chamber n → ∞, as will become clear in the examples presented below.

In case of closed BPS states, the above matrix model representation of Zn depends

on Kähler parameters Qi encoded in the potential V (z), and the choice of closed BPS

chamber is specified by the number n of wall-crossing operators in (11). In the context

of counting open BPS states one should introduce their generating parameter, as well as

specify a choice of open BPS chamber k. Now we present how to identify these parameters.

Firstly, we claim that the open generating parameter can be identified with matrix

eigenvalues zα, and a dependence on an open BPS chamber can be introduced by a more

general way of insertion of the identity operator in (11). In particular, the open BPS

chamber labeled by k is be represented by inserting the identity at location k within a

string of A− operators. We recall that the correlator (11) represents a pyramid crystal, in
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which each single-colored layer is represented by an insertion of one Γ± operator (which

are building blocks of A±). Therefore the insertion of the identity operator in the form

(13) at a position k represents gluing a crystal, along the corresponding layer, from the

two independent parts. This is a reminiscent of how closed topological string amplitudes

are built from the open amplitudes in the topological vertex theory [18]. Therefore, the

above prescription leads to the following matrix model representation

Zn = 〈0|
∞∏

i=k

A+(1)|I|
k−1∏

j=0

A+(1)|W
n
|Ω−〉 =

=

∫
DU 〈0|

∞∏

i=k+1

A+(1)|
∏

α

Γ′
−(zα)|0〉〈0|

∏

α

Γ′
+(z

−1
α )|

k∏

j=0

A+(1)|W
n
|Ω−〉 =

= fk
n(q, Qi)

∫
DU

∏

α

e−
1

gs
V k
n (zα), (15)

and our claim states that the open BPS generating function (10) can be identified with

the integrand

Zopen
BPS = e−

1

gs
V k
n (z), (16)

up to a simple identification of parameters (which amounts to the shift z → −zq1/2 (to

match earlier M-theory convention with half-integer powers of q, to integer powers of q

in the fermionic formalism), as well as identification of Kähler parameters considered in

M-theory derivation with µi introduced below). The BPS generating function in (10) is

determined by the open topological string partition function associated to the external axis

of the toric diagram, as in figure 2.3 The prefactor fk
n above arises from commuting away

vertex operators and it depends on q and closed string parameters Qi, but does not involve

open generating parameters. Now the potential V k
n (z) depends on a choice of both closed

and open chambers, specified by integers n and k, and open BPS modulus is identified

with matrix eigenvalue z.

Secondly, we claim that the value of the above integral can be related to a more general

Calabi-Yau geometry Y . This more general geometry involves two copies of the initial

geometry X with Kähler parameters Qi and µi respectively (where µi encode information

of the closed BPS chambers), as well as an additional two-cycle with Kähler parameter

qk. The value of the integral
∫
DU

∏
α e

− 1

gs
V k
n (zα) is then given by the part of the closed

3Similarly as in topological strings, one should be able to obtain amplitudes for branes associated to

other axis by appropriate analytic continuation
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topological string amplitude for Y which probes this additional two-cycle (i.e. contains

only factors involving qk).

Figure 2: Brane associated to the external leg of a toric diagram (of a conifold

in this particular case). Closed string parameter is denoted by Q and open

string parameter by z.

Let us mention how how these results relate to the viewpoint of [18]. In general in

string theory closed amplitudes can be obtained from integrating out open amplitudes

Zclosed =

∫
Zopen. (17)

As stressed in [18], topological strings are a very instructive example of such phenomena,

where integrals over open degrees of freedom reduce to matrix integrals, whose potentials

encode (a reduction of) the action on a brane. Precise form of such integrals depends on

a nature of open degrees of freedom. In case of compact branes, the theory on a brane is

identified with a holomorphic Chern-Simons theory, whose reduction results in Dijkgraaf-

Vafa matrix models [17]. On the other hand, the case of non-compact branes on B-model

geometries uv + H(x, y) = 0 involving a Riemann surface H(x, y) = 0 leads to matrix

models

Zclosed =

∫
Zopen ∼

∫
DUe−

1

gs

∫
y(x)dx, (18)

whose action (in the WKB approximation) is identified with the with Kodaira-Spencer

field φ(x) =
∫ x

y(x)dx. The expression for y(x) can be found from the equation of the

13



Riemann surface H(x, y) = 0, and the integration by parts in (18) leads to the Kontsevich-

like matrix models presented in [18]. This case of non-compact branes on geometries

based on a Riemann surface is also important to us, as it can be thought of as a limiting

(commutative) case of situations involving BPS counting. Our results give rise to a relation

similar to (17), however valid in principle in any chamber. In our case Zopen refers to the

open BPS amplitude in an arbitrary (open and closed) chamber in the initial geometry X,

while Zclosed represents (a part of) the closed topological string amplitude for the geometry

Y introduced above. On the other hand, in the commutative open and closed chamber

k, n → ∞, our matrix models have form consistent with (18).

In the next section we present how these claims are realized in several representative

examples. We note that in the open chamber corresponding to k → ∞, the representation

of the identity operator in the first line of (15) detects the open BPS configuration corre-

sponding to the open BPS chamber implied by a definition considered in [28, 29]. We also

note that related geometric transitions in the purely topological string perspective were

discussed in [35].

4 Examples

In this section we show in several examples how open BPS generating functions arise

from matrix model realization of closed BPS generating functions, and present associated

generalized geometries Y . Examples which we discuss involve C3 geometry with arbitrary

open BPS chamber, arbitrary geometry with arbitrary open chamber and fixed (non-

commutative) closed chamber, as well as conifold and C3/Z2 geometries with arbitrary

open and closed chambers.

One more remark is in order here. As shown in section 2, open BPS generating functions

can be identified with a reduction of the modulus square of the open topological string

amplitude. In fact we should notice that such open topological amplitudes are defined

up to a framing ambiguity [40, 41]. This shows up already in the simplest example of

C3 geometry, which in generic framing encodes infinite number of open Gopakumar-Vafa

invariants. Nonetheless, for branes in a geometry without compact four-cycles, one can

always choose a framing in which amplitudes simplify, and are given by a product of a few

quantum dilogarithms representing wrappings over all possible open and closed two-cycles

in the manifold. Such amplitudes were explicitly computed for example in [18, 32, 33].

In case of a single brane in C3, in such special framing the amplitude is given by a single

14



quantum dilogarithm (9)

Zopen,C3

top = L(z, q), (19)

where z captures the area of a disc ending on the lagrangian cycle. Similarly, for a brane

in the (external leg of the) conifold, there is a special framing in which brane amplitude

is given by a ratio of two dilogarithms. In what follows we implicitly consider branes in

such special framings. For general strip-like geometry with N +1 vertices of types ti (with

convention t1 = +1) and Kähler parameters Qi, such brane amplitude reads

Zopen
top =

N+1∏

a=1

L
(
z(Q1Q2 · · ·Qa−1), q

)ta
≡ L(z)

N+1∏

a=2

L
(
z(Q1Q2 · · ·Qa−1), q

)ta
, (20)

and the corresponding open BPS generating function is

Zopen
BPS =

N+1∏

a=1

L
(
z(Q1Q2 · · ·Qa−1), q

)ta
L
(
z−1(Q1Q2 · · ·Qa−1)

−1, q
)ta

|chamber. (21)

It would be interesting to understand framing dependence of these amplitudes as well.

4.1 C3

As the first example we consider C3 geometry and show how open BPS generating

functions, derived from M-theory viewpoint in section 2, appear in matrix models encoding

closed amplitudes, discussed in section 3.

As already mentioned, the open topological string amplitude for a brane in C3 is given

by the quantum dilogarithm (19). From the stability condition for the central charge (8)

and the general formula (10), we find, in the open chamber labeled by k, the following set

of open BPS generating functions

Zopen
k =

∞∏

i=1

(1− zqi−1/2)

∞∏

j>k

(1− z−1qj−1/2). (22)

Let us note that the chamber for k = 0 is a special one, in which the generating function

Z0 = q1/24
θ3(z, q)

η(q)
,

is indeed (up to the overall q1/24) a modular form, as explained in section 2. On the other

hand, for k → ∞, the generating function Zk→∞ reduces to the open topological string

amplitude (19).
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Figure 3: Factorization of C3 crystal which leads to open BPS generating func-

tions. The size k encodes the open BPS chamber.

Let us present how the result (22) arises from the matrix model viewpoint, following

conventions presented in section 3. In this case A+(1) = Γ+(1)Q̂ and the geometry of C3

is encoded in the state

|Ω−〉 =
∞∏

i=1

Γ−(q
i)|0〉,

and similarly for 〈Ω+|. There is a single closed string chamber in which the generating

function Z = 〈Ω+|Ω−〉 = M(1) is given by the MacMahon function M(1), where we denote

M(x) =
∞∏

j=1

1

(1− xqj)j
.

According to our proposition, we now insert the operator I at the location k. While it

does not change the total value of matrix integral, the explicit dependence on k enters the

potential and we get:

Z = M(1) = 〈0|
∞∏

i=k

A+(1)|I|
k−1∏

j=0

A+(1)|Ω−〉 =

= fk(q)Zmatrix, (23)

where

Zmatrix =

∫
DU

∏

α

∞∏

j=1

(1 + zαq
j)

∞∏

i=k

(1 + z−1
α qj),
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and

fk(q) =

k∏

i=1

∞∏

j=0

1

1− qi+j
=

M(1)

M(qk)
.

Matrix model integrand indeed reproduces open BPS generating function (22) (up to a

redefinition z → −zq1/2) in a chamber labeled by k. From the viewpoint of open BPS

states, the prefactor fk(q) may be viewed as an ingredient necessary to provide the required

form of the matrix model potential. The value of the matrix integral itself,

Zmatrix = M(qk), (24)

can be identified with a part (sensitive to qk) of the closed topological string geometry

Y = C3/Z2, with P1 resolved to size qk, as shown in figure 4.

Figure 4: Effective geometry detected by Zmatrix in (24).

We note that in the limit k → ∞ the potential, to the leading order, is given by the

dilogarithm

L(z, q) ∼ e−
1

gs
Li2(z).

This is consistent with (18). Indeed, from the equation of the mirror surface H(x, y) =

−ex + e−y − 1 = 0 we find

e−
1

gs

∫
y(x)dx = e−

1

gs
Li2(ex+iπ),

which reproduces to the leading order the potential arising from the quantum dilogarithm.

4.2 Arbitrary geometry

Now we consider an arbitrary strip-like geometry, with arbitrary open BPS chamber,

and with all closed chambers fixed to the non-commutative value n = 0. The correlators
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(15) result in

Zn=0 = fk
n=0Zmatrix,

where, in terms of µi =
1
Qi

= (titi+1)
1
qi

, we find

Zmatrix =

∫
DU

∏

α

N+1∏

a=1

∞∏

j=0

(
1 + zαq

j+1(µ1µ2 · · ·µa−1)
)ta(

1 +
qj+k

zαµ1µ2 · · ·µa−1

)ta
.

This agrees with open BPS generating function (21) in n = 0 chamber, if one redefines

z → −zq1/2 as above, and identifies Kähler parameters used in M-theory derivation of

(21) with µi. Indeed, considering the open chamber labeled by k amounts to a chamber

restriction in (21) which is manifested by including a factor qk in the argument of all

dilogarithms involving z−1.

The factor fk
n=0 is given as the ratio of Zn=0, and Zn=0 with all arguments of MacMahon

functions shifted by qk. This implies that

Zmatrix = M(qk)N+1
∏

1≤a<b≤N+1

M(qkQa · · ·Qb−1)
tatbM(qkµa · · ·µb−1)

tatb . (25)

This result can be interpreted as qk-sensitive part of the closed topological string amplitude

for a more general geometry Y , which includes two copies of the initial geometry X with

Kähler parameters Qi and µi = Q−1
i respectively, as well as an additional two-cycle of type

C3/Z2, see figure 5.

Figure 5: Effective geometry detected by Zmatrix in (25).
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4.3 Conifold

We repeat the above analysis for the case of a brane associated to the external leg of a

toric diagram. With appropriate choice of the framing its amplitude reads

Zopen
top =

L(z, q)

L(zQ, q)
,

In the context of open BPS counting, this again leads to the modular generating function

in the non-commutative chamber n = k = 0.

More generally, let us consider open BPS counting associated to such a brane, with

closed chamber labeled by n, and open chamber labeled by k. The analysis of the condition

(8) leads, after the shift z → −zq1/2, to a general generating function of open BPS states

Zopen, k
n = |Zopen

top |2chamber =
∞∏

l=1

(1 + zql)(1 + z−1qk+l−1)

(1 + zQql)(1 + z−1Q−1qn+k+l−1)
. (26)

Figure 6: Factorization of the conifold pyramid which leads to open BPS gener-

ating functions. The size of the pyramid n represents the closed BPS chamber,

while the size k encodes the open BPS chamber.

Again we can show that it arises from matrix model viewpoint. Following con-

ventions of section 3 and precise form of operators A±(x) = Γ±(x)Q̂1Γ
′
±(x)Q̂0 and

W = Γ−(1)Q̂1Γ
′
+(1)Q̂0 derived in [10], we find

Zn = 〈0|
∞∏

i=k

A+(1)|I|
k−1∏

j=0

A+(1)|W
n
|Ω−〉 = fk

nZmatrix. (27)
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In terms of µ = − 1
q1

= Q−1qn the matrix integral takes form

Zmatrix =

∫
DU

∏

α

∞∏

j=1

(1 + zαq
j)(1 + z−1

α qk+j−1)

(1 + zαµqj)(1 + z−1
α µ−1qj+n+k−1)

.

The integrand of this matrix model agrees with M-theory considerations (26) (again identi-

fying µ with Kähler parameter used in M-theory derivation). In the limit n → ∞ followed

by µ → 0 we get the answer for C3 given in (23), as expected. On the other hand, for both

n, k → ∞, the integrand reduces to the open topological string amplitude given by a ratio

of two quantum dilogarithms. To the leading order this ratio is is equal to a difference of

two ordinary dilogarithms Vn,k→∞ ∼ Li2(e
x+iπ)− Li2(µe

x+iπ), in agreement with the form

of matrix models (18) derived from the conifold geometry H(x, y) = 1+ ex + e−y + µex−y.

The prefactor above is found as

fk
n = M(1)2

M(µqk)M(Qqk)

M(µ)M(qk)M(Q)M(µQqk)

∞∏

j=1

(
1− µqj

)n
.

In consequence, the value of the matrix integral takes form

Zmatrix =
M(qk)M(µQqk)

M(µqk)M(Qqk)
, (28)

which is the qk-sensitive part of the closed topological string partition function of a manifold

Y shown in figure 7. As claimed above, Y consists of two copies of conifolds parametrized

respectively by Q and µ, as well as an additional cycle of size qk.

Figure 7: Effective geometry detected by Zmatrix in (28).
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4.4 C
3/Z2

Finally we consider the resolved C
3/Z2 singularity. In this case the topological string

partition function for a brane on the external leg reads

Zext
top = L(z, q)L(zQ, q).

In consequence, BPS generating functions in a closed chamber n and open chamber k is

(after z → −zq1/2 shift)

Zopen, k
n = |Zopen

top |2chamber =

∞∏

l=1

(1 + zql)(1 + zQql)(1 + z−1qk+l−1)(1 + z−1Q−1qn+k+l−1).

On the other hand, from matrix model perspective, with A±(x) = Γ±(x)Q1Γ±(x)Q0

and W = Γ−(1)Q̂1Γ+(1)Q̂0 as discussed in [10], and µ = 1
q1

= Q−1qn, we obtain

Zn
k = 〈0|

∞∏

i=k

A+(1)|I|

k−1∏

j=0

A+(1)|W
n
|Ω−〉 = fk

nZmatrix =

= fk
n

∫
DU

∏

α

∞∏

j=1

(1 + zαq
j)(1 + zαµq

j)(1 +
qk+j−1

zα
)(1 +

qn+k+j−1

zαµ
), (29)

and the matrix integrand again agrees with the M-theory result (when written in terms of

the argument µ) above.

Now the prefactor reads

fk
n = M(1)2

M(µ)M(Q)

M(µqk)M(qk)M(µQqk)M(Qqk)

∞∏

j=1

(1− µqj)−n.

Therefore the matrix integral takes value

Zmatrix = M(qk)M(µqk)M(Qqk)M(µQqk), (30)

which is qk-sensitive part of the geometry shown in figure 8.
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Figure 8: Effective geometry detected by Zmatrix in (30).
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