158 research outputs found

    Gardenia jasminoides

    Get PDF
    Ultraviolet radiation (UV) is a major cause of photoaging, which also involves inflammatory cytokines and matrix metalloproteinases (MMP). The present study was undertaken to examine the UVB-protecting effects of yellow-colored plant extracts in cell-based assays. HaCaT keratinocytes were exposed to UVB in the absence or presence of plant extracts, and resulting changes in cell viability and inflammatory cytokine expression were measured. Of the plant extracts tested, Gardenia jasminoides extract showed the lowest cytotoxicity and dose-dependently enhanced the viabilities of UVB-exposed cells. Gardenia jasminoides extract also attenuated the mRNA expressions of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in HaCaT cells stimulated by UVB. Conditioned medium from UVB-exposed HaCaT cells was observed to stimulate MMP-1 protein expression in human dermal fibroblasts, and this effect was much smaller for the conditioned medium of HaCaT cells exposed to UVB in the presence of Gardenia jasminoides extract. Gardenia jasminoides extract also exhibited antioxidative and antiapoptotic effects in HaCaT cells exposed to UVB. These results indicated that UVB-induced injury and inflammatory responses of skin cells can be attenuated by yellow-colored plant extracts, such as Gardenia jasminoides extract

    Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Get PDF
    Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10). PM10 stimulates the production of reactive oxygen species (ROS) and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter

    Growth differentiation factor 11 locally controls anterior-posterior patterning of the axial skeleton.

    Get PDF
    Growth and differentiation factor 11 (GDF11) is a transforming growth factor β family member that has been identified as the central player of anterior-posterior (A-P) axial skeletal patterning. Mice homozygous for Gdf11 deletion exhibit severe anterior homeotic transformations of the vertebrae and craniofacial defects. During early embryogenesis, Gdf11 is expressed predominantly in the primitive streak and tail bud regions, where new mesodermal cells arise. On the basis of this expression pattern of Gdf11 and the phenotype of Gdf11 mutant mice, it has been suggested that GDF11 acts to specify positional identity along the A-P axis either by local changes in levels of signaling as development proceeds or by acting as a morphogen. To further investigate the mechanism of action of GDF11 in the vertebral specification, we used a Cdx2-Cre transgene to generate mosaic mice in which Gdf11 expression is removed in posterior regions including the tail bud, but not in anterior regions. The skeletal analysis revealed that these mosaic mice display patterning defects limited to posterior regions where Gdf11 expression is deficient, whereas displaying normal skeletal phenotype in anterior regions where Gdf11 is normally expressed. Specifically, the mosaic mice exhibited seven true ribs, a pattern observed in wild-type (wt) mice (vs. 10 true ribs in Gdf11-/- mice), in the anterior axis and nine lumbar vertebrae, a pattern observed in Gdf11 null mice (vs. six lumbar vertebrae in wt mice), in the posterior axis. Our findings suggest that GDF11, rather than globally acting as a morphogen secreted from the tail bud, locally regulates axial vertebral patterning

    Effect of ketorolac and diclofenac on the impairment of endothelium-dependent relaxation induced by reactive oxygen species in rabbit abdominal aorta

    Get PDF
    Background: Reactive oxygen species (ROS) induce lipid peroxidation and tissue damage in endothelium. We studied the influences of ketorolac and diclofenac on ROS effects using the endothelium of rabbit abdominal aorta. Methods: Isolated rabbit aortic rings were suspended in an organ bath filled with Krebs-Henseleit (K-H) solution bubbled with 5% CO2 and 95% O2 at 37.5??C. After being stimulated to contract with phenylephrine (PE, 10-6 M), changes in arterial tension were recorded following the cumulative administration of acetylcholine (ACh, 3 ?? 10-8 to 10-6 M). The percentages of ACh-induced relaxation of aortic rings before and after exposure to ROS, generated by electrolysis of K-H solution, were used as the control and experimental values, respectively. The aortic rings were pretreated with ketorolac or diclofenac at the same concentrations (10-5 M to 3 ?? 10-4 M), and the effects of these agents were compared with the effects of ROS scavengers: catalase, mannitol, sodium salicylate and deferoxamine and the catalase inhibitor, 3-amino-1,2,4-triazole (3AT). Results: Both ketorolac and diclofenac maintained endothlium-dependent relaxation induced by ACh in a dose-related manner inspite of ROS attack (P &lt; 0.05 vs. control value). The 3AT pretreated ketorolac (3 ?? 10-3 M) group was decreased more significantly than un-pretreated ketorolac (P &lt; 0.05). Conclusions: These findings suggest that ketorlac and diclofenac preserve the endothelium-dependent vasorelaxation against the attack of ROS, in a concentration-related manner. One of the endothelial protection mechanisms of ketorolac may be hydrogen peroxide scavenging. Copyright ?? Korean Society of Anesthesiologists, 2010

    Switching of Slow Magnetic Relaxation Dynamics in Mononuclear Dysprosium(III) Compounds with Charge Density

    Get PDF
    The symmetry around a Dy ion is recognized to be a crucial parameter dictating magnetization relaxation dynamics. We prepared two similar square-antiprismatic complexes, [Dy(LOMe)2(H2O)2](PF6) (1) and Dy(LOMe)2(NO3) (2), where LOMe = [CpCo{P(O)(O(CH3))2}3], including either two neutral water molecules (1) or an anionic nitrate ligand (2). We demonstrated that in this case relaxation dynamics is dramatically affected by the introduction of a charged ligand, stabilizing the easy axis of magnetization along the nitrate direction. We also showed that the application of either a direct-current field or chemical dilution effectively stops quantum tunneling in the ground state of 2, thereby increasing the relaxation time by over 3 orders of magnitude at 3.5 K.FP7-ERC-247384ERC-2014-CoG/ 647301MAT2014-56143-RCTQ2014-52758-PMDM-2015-0538The symmetry around a Dy ion is recognized to be a crucial parameter dictating magnetization relaxation dynamics. We prepared two similar square-antiprismatic complexes, [Dy(LOMe)2(H2O)2](PF6) (1) and Dy(LOMe)2(NO3) (2), where LOMe = [CpCo{P(O)(O(CH3))2}3], including either two neutral water molecules (1) or an anionic nitrate ligand (2). We demonstrated that in this case relaxation dynamics is dramatically affected by the introduction of a charged ligand, stabilizing the easy axis of magnetization along the nitrate direction. We also showed that the application of either a direct-current field or chemical dilution effectively stops quantum tunneling in the ground state of 2, thereby increasing the relaxation time by over 3 orders of magnitude at 3.5 K

    Tonicity-responsive enhancer-binding protein promotes hepatocellular carcinogenesis, recurrence and metastasis

    Get PDF
    Objectives: Hepatocellular carcinoma (HCC) is a common cancer with high rate of recurrence and mortality. Diverse aetiological agents and wide heterogeneity in individual tumours impede effective and personalised treatment. Tonicity-responsive enhancer-binding protein (TonEBP) is a transcriptional cofactor for the expression of proinflammatory genes. Although inflammation is intimately associated with the pathogenesis of HCC, the role of TonEBP is unknown. We aimed to identify function of TonEBP in HCC. Design: Tumours with surrounding hepatic tissues were obtained from 296 patients with HCC who received completion resection. TonEBP expression was analysed by quantitative reverse transcription-quantitative real-time PCR (RT-PCR) and immunohfistochemical analyses of tissue microarrays. Mice with TonEBP haplodeficiency, and hepatocyte-specific and myeloid-specific TonEBP deletion were used along with HCC and hepatocyte cell lines. Results: TonEBP expression is higher in tumours than in adjacent non-tumour tissues in 92.6% of patients with HCC regardless of aetiology associated. The TonEBP expression in tumours and adjacent non-tumour tissues predicts recurrence, metastasis and death in multivariate analyses. TonEBP drives the expression of cyclo-oxygenase-2 (COX-2) by stimulating the promoter. In mouse models of HCC, three common sites of TonEBP action in response to diverse aetiological agents leading to tumourigenesis and tumour growth were found: cell injury and inflammation, induction by oxidative stress and stimulation of the COX-2 promoter. Conclusions: TonEBP is a key component of the common pathway in tumourigenesis and tumour progression of HCC in response to diverse aetiological insults. TonEBP is involved in multiple steps along the pathway, rendering it an attractive therapeutic target as well as a prognostic biomarker
    corecore