8 research outputs found

    Post-stroke reorganization of transient brain activity characterizes deficits and recovery of cognitive functions

    Get PDF
    Functional magnetic resonance imaging (fMRI) has been widely employed to study stroke pathophysiology. In particular, analyses of fMRI signals at rest were directed at quantifying the impact of stroke on spatial features of brain networks. However, brain networks have intrinsic time features that were, so far, disregarded in these analyses. In consequence, standard fMRI analysis failed to capture temporal imbalance resulting from stroke lesions, hence restricting their ability to reveal the interdependent pathological changes in structural and temporal network features following stroke. Here, we longitudinally analyzed hemodynamic-informed transient activity in a large cohort of stroke patients (n = 103) to assess spatial and temporal changes of brain networks after stroke. Metrics extracted from the hemodynamic-informed transient activity were replicable within- and between-individuals in healthy participants, hence supporting their robustness and their clinical applicability. While large-scale spatial patterns of brain networks were preserved after stroke, their durations were altered, with stroke subjects exhibiting a varied pattern of longer and shorter network activations compared to healthy individuals. Specifically, patients showed a longer duration in the lateral precentral gyrus and anterior cingulum, and a shorter duration in the occipital lobe and in the cerebellum. These temporal alterations were associated with white matter damage in projection and association pathways. Furthermore, they were tied to deficits in specific behavioral domains as restoration of healthy brain dynamics paralleled recovery of cognitive functions (attention, language and spatial memory), but was not significantly correlated to motor recovery. These findings underscore the critical importance of network temporal properties in dissecting the pathophysiology of brain changes after stroke, thus shedding new light on the clinical potential of time-resolved methods for fMRI analysis

    Inferring the dynamic of mutated hematopoietic stem and progenitor cells induced by IFNα in myeloproliferative neoplasms

    Get PDF
    International audienceClassical BCR-ABL-negative myeloproliferative neoplasms (MPN) are clonal disorders of hematopoietic stem cells (HSC) caused mainly by recurrent mutations in genes encoding JAK2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL). Interferon alpha (IFNα) has demonstrated some efficacy in inducing molecular remission in MPN. In order to determine factors that influence molecular response rate, we evaluated the long-term molecular efficacy of IFNα in MPN patients by monitoring the fate of cells carrying driver mutations in a prospective observational and longitudinal study of 48 patients over more than 5 years. We measured several times per year the clonal architecture of early and late hematopoietic progenitors (84,845 measurements) and the global variant allele frequency in mature cells (409 measurements). Using mathematical modeling and hierarchical Bayesian inference, we further inferred the dynamics of IFNα-targeted mutated HSC. Our data support the hypothesis that IFNα targets JAK2V617F HSC by inducing their exit from quiescence and differentiation into progenitors. Our observations indicate that treatment efficacy is higher in homozygous than heterozygous JAK2V617F HSC and increases with high IFNα dosage in heterozygous JAK2V617F HSC. Besides, we found that the molecular responses of CALRm HSC to IFNα were heterogeneous, varying between type 1 and type 2 CALRm, and high dosage of IFNα correlates with worse outcomes. Together, our work indicates that the long-term molecular efficacy of IFNα implies an HSC exhaustion mechanism and depends on both the driver mutation type and IFNα dosage

    Figures de bibliothécaires

    No full text
    Cet ouvrage est le premier dictionnaire biographique consacrĂ© au monde des bibliothĂšques françaises. L’équipe scientifique rĂ©unie par Isabelle Antonutti a choisi 100 personnalitĂ©s, femmes ou hommes, ayant exercĂ© du milieu du XIXe Ă  la fin du XXe siĂšcle, Ă  Paris ou en province. À travers elles, on retrouve toutes les Ă©volutions du mĂ©tier : pionniers de la lecture publique, bĂątisseurs de l’universitĂ©, savants du patrimoine, techniciens de la bibliothĂ©conomie
 Plus de 60 rĂ©dacteurs se sont associĂ©s Ă  ce livre exceptionnel par son ambition comme par son projet : montrer qu’une bibliothĂšque est d’abord un projet social et humain

    A dataset of acoustic measurements from soundscapes collected worldwide during the COVID-19 pandemic

    No full text
    International audiencePolitical responses to the COVID-19 pandemic led to changes in city soundscapes around the globe. From March to October 2020, a consortium of 261 contributors from 35 countries brought together by the Silent Cities project built a unique soundscape recordings collection to report on local acoustic changes in urban areas. We present this collection here, along with metadata including observational descriptions of the local areas from the contributors, open-source environmental data, open-source confinement levels and calculation of acoustic descriptors. We performed a technical validation of the dataset using statistical models run on a subset of manually annotated soundscapes. Results confirmed the large-scale usability of ecoacoustic indices and automatic sound event recognition in the Silent Cities soundscape collection. We expect this dataset to be useful for research in the multidisciplinary field of environmental sciences
    corecore