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a b s t r a c t 

Functional magnetic resonance imaging (fMRI) has been widely employed to study stroke pathophysiology. In 

particular, analyses of fMRI signals at rest were directed at quantifying the impact of stroke on spatial features 

of brain networks. However, brain networks have intrinsic time features that were, so far, disregarded in these 

analyses. In consequence, standard fMRI analysis failed to capture temporal imbalance resulting from stroke 

lesions, hence restricting their ability to reveal the interdependent pathological changes in structural and temporal 

network features following stroke. Here, we longitudinally analyzed hemodynamic-informed transient activity 

in a large cohort of stroke patients ( n = 103) to assess spatial and temporal changes of brain networks after 

stroke. Metrics extracted from the hemodynamic-informed transient activity were replicable within- and between- 

individuals in healthy participants, hence supporting their robustness and their clinical applicability. While large- 

scale spatial patterns of brain networks were preserved after stroke, their durations were altered, with stroke 

subjects exhibiting a varied pattern of longer and shorter network activations compared to healthy individuals. 

Specifically, patients showed a longer duration in the lateral precentral gyrus and anterior cingulum, and a 

shorter duration in the occipital lobe and in the cerebellum. These temporal alterations were associated with 

white matter damage in projection and association pathways. Furthermore, they were tied to deficits in specific 

behavioral domains as restoration of healthy brain dynamics paralleled recovery of cognitive functions (attention, 

language and spatial memory), but was not significantly correlated to motor recovery. These findings underscore 

the critical importance of network temporal properties in dissecting the pathophysiology of brain changes after 

stroke, thus shedding new light on the clinical potential of time-resolved methods for fMRI analysis. 

Abbreviations: fMRI:, functional magnetic resonance imaging; rs-fMRI:, resting-state fMRI; FC:, functional connectivity; dFC:, dynamic FC; iCAP:, innovation-driven 

coactivation patterns; PCA:, principal component analysis; CSF:, cerebrospinal fluid; TA:, total activation; AUC:, area under the receiver operation characteristics 

curve; LDA:, linear discriminant analysis; PLSC:, partial least squares correlation; FDR:, false discovery rate; DMN:, default mode network; EMC:, extreme capsule; 

IFOF:, inferior fronto-occipital fasciculus. 
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1. Introduction 

The mammalian brain, even in the absence of explicit task, operates 
through the continuous integration and segregation of signals from dif- 
ferent brain areas. Since the landmark work from Fox and colleagues in 
2005 ( Fox et al., 2005 ), functional magnetic resonance imaging (fMRI) 
performed at rest has become one of the most prominent methods to 
investigate intrinsic brain activity and its relationship with behavior 
or psychopathology ( Van Den Heuvel and Pol, 2010 ; Lee et al., 2013 ; 
Bolton et al., 2020 ). These task-free resting-state paradigms could poten- 
tially be advantageous to measure pathological brain changes, as they 
can be readily deployed, even with patients unable to match control 
performance due to motor and cognitive impairment ( Krakauer, 2004 ; 
Krakauer, 2007 ). 

Analysis of resting-state fMRI (rs-fMRI) has so far mostly relied 
on measuring inter-regional (or voxel- or vertex-level) connectivity by 
means of Pearson correlation between time-series from a set of pre- 
defined regions of interest (a.k.a. static functional connectivity). In 
these studies, information exchange between neuronal populations of 
different regions is assumed to engender stronger statistical depen- 
dency stationary over time. Nevertheless, the human brain is a dy- 
namic system that fluctuates at the time scale of milliseconds ( Van Den 
Heuvel and Pol, 2010 ). Therefore, static connectivity approaches, de- 
spite their methodological simplicity and ease, may miss features re- 
flecting the inherent dynamic nature of the brain. In the last decade, 
several time-resolved approaches have thus been proposed to investigate 
the so-called dynamic functional connectivity (dFC) (see ( Preti et al., 
2017 ) for a review). They have been demonstrated to provide ben- 
efits over static methods, notably to study cognition and psychiatric 
disorders ( Preti et al., 2017 ; Cohen, 2018 ; Karahano ğlu and Van De 
Ville, 2017 ; Hutchison et al., 2013 ). Besides, deeming non-stationarity 
enables a more accurate description of the modular interactions occur- 
ring between brain functional networks and their anatomical substrate 
( Bullmore and Sporns, 2009 ). 

Stroke is one of the major neurological disorders in Western soci- 
eties and a leading cause of long-term disabilities. Ranging from motor 
to cognitive deficits, these disabilities arise from both focal structural 
changes (tied to the injury) and widespread functional alterations in 
inter-regional connectivity ( Siegel et al., 2016 ; Salvalaggio et al., 2020 ), 
as theorized under the concept of connectional diaschisis ( Carrera and 
Tononi, 2014 ). Structural and functional abnormalities combine in an 
interdependent manner to generate both deficits and recovery processes. 
Considering the complexity of these interactions, time-resolved FC ap- 
proaches, which capture spatial and temporal properties of brain net- 
works, could help unravel the intertwine between structural disrup- 
tions and lesion-induced dynamic changes in large-scale functional net- 
works. Coupled to behavioral and clinical assessments, these methods 
could further elucidate the nature of pathological changes occurring af- 
ter stroke, possibly supporting our understanding of recovery processes. 
However, while moving from stationary to dynamic functional connec- 
tivity estimates is an important methodological endeavor, it faces addi- 
tional challenges such as test-retest reliability, which appears to be even 
more critical for time-tailored than for classical methods ( Cohen, 2018 ; 
Zhang et al., 2018 ). Lack of test-retest reliability of fMRI measures chal- 
lenges the interpretability of the current clinical findings, particularly 
with regard to changes over time. 

Previously, a handful of studies have employed time-tailored meth- 
ods to explore the neural correlates of stroke ( Bonkhoff et al., 2020 ; 
A.K. Bonkhoff et al., 2021 ; A.K. Bonkhoff et al., 2021 ; Hu et al., 2018 ; 
Obando et al., 2019 ; Duncan and Small, 2018 ; Chen et al., 2018 ) show- 
ing evidence in favor of a dynamic reconfiguration of brain networks fol- 
lowing stroke. However, they relied on small sample sizes and focused 
solely on specific neurological symptoms (i.e., mostly motor deficits), 
limiting the generalizability of their findings ( Woo et al., 2017 ). Be- 
sides, they relied on a priori selection of brain regions, which limits the 
identification of alternative areas that may be recruited into a network 

( Carter et al., 2012 ), and on time-windowed estimates, which confine 
the investigation to slow changes in connectivity ( Preti et al., 2017 ). 

Here, we leveraged a recent dynamic FC framework, i.e., 
the innovation-driven coactivation patterns (iCAP) framework 
( Karahano ğlu and Van De Ville, 2015 ; A. Tarun et al., 2020 ; Zöller et al., 
2019 ; D.M. Zöller et al., 2018 ; Zoeller et al., 2019 ; Piguet et al., 2021 ), 
to overcome these limitations and investigate whether spatial and 
temporal properties of large-scale brain networks following stroke cor- 
relate with anatomical damage and behavioral recovery. Importantly, 
the iCAP method relies on a data-driven approach that employs single 
frames without a priori selection of regions of interest. In addition, it 
includes a hemodynamic-informed deconvolution step, which confers 
to this framework the unique potential of identifying large-scale brain 
networks that can be spatially and temporally overlapping. These 
procedures were previously demonstrated to allow disentangling 
the spatiotemporal organization of brain ( Karahano ğlu and Van De 
Ville, 2015 ) and spinal cord activity ( Kinany et al., 2020 ; Kinany et al., 
2022 ) with a finer level of detail, which is beneficial to capture 
spatial and temporal properties of brain networks. We applied the 
iCAP framework to an extensive dataset including healthy controls 
( n = 19) scanned in two sessions at three months apart and stroke 
patients ( n = 103) scanned at different points in time after-lesion 
(i.e., 1–2 weeks, 3 months and 1 year) and with different neurological 
syndromes (i.e., ranging from motor to cognitive deficits). Part of the 
data were already presented in previous publications demonstrating 
the validity of the dataset ( Siegel et al., 2016 ; Salvalaggio et al., 2020 ; 
Siegel et al., 2018 ; Griffis et al., 2020 ; Griffis et al., 2019 ; Corbetta et al., 
2015 ; Ramsey et al., 2017 ). We first assessed test-retest reliability of 
spatial and temporal properties of the extracted brain networks in 
the healthy subjects, so as to confirm the robustness of the metrics of 
interest. Building upon these results, we then compared these control 
values with those derived from the brain networks of stroke patients. 
While the spatial patterns of the obtained large-scale functional brain 
networks were preserved after stroke, lesions disrupted their temporal 
durations, emphasizing the prospects of exploiting time-resolved fMRI 
methods. Importantly, these altered durations were i) proportional 
to the percentage of disrupted white matter fibers; ii) specific to the 
neuropsychological deficit; iii) correlated with functional improve- 
ments; and iv) restored over time proportionally to the recovery of 
deficits. 

This is the first time that a time-resolved approach is deployed in 
a large cohort of stroke patients, which were evaluated longitudinally 
with a comprehensive set of multi-domain clinical assessments. Using 
the iCAP framework, we revealed important aspects of post-lesional re- 
organization of functional dynamics, in relation to anatomy and to be- 
havioral changes. We posit that understanding the nature of this rela- 
tionship is pivotal to grasp the multifaceted reorganization mechanisms 
that occur following stroke, and that are directly involved in recovery 
( Woo et al., 2017 ; Haller et al., 2014 ; Allali et al., 2018 ; Ward, 2015 ; 
Guggisberg et al., 2019 ). 

2. Material and methods 

2.1. Participants 

All participants gave their written informed consent to participate 
in accordance with the Declaration of Helsinki, and the study was ap- 
proved by the Institutional Review Board at Washington University in 
St. Louis. The complete data collection protocol is described in detail 
elsewhere ( Corbetta et al., 2015 ). Part of the data were used in previous 
publications ( Siegel et al., 2016 ; Salvalaggio et al., 2020 ; Siegel et al., 
2018 ; Griffis et al., 2020 ; Griffis et al., 2019 ; Corbetta et al., 2015 ; 
Ramsey et al., 2017 ). Data from 127 first-time stroke patients with 
clinical evidence of impairment and data from 21 demographically 
matched healthy controls were considered for inclusion in the analyses 
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( Table S1 ). Healthy adults matched the stroke population by age, gen- 
der, handedness, and level of education (see ( Siegel et al., 2016 ) for de- 
tails in inclusion and exclusion criteria for the two population groups). 

From the initial sample of 148 subjects, n = 24 patients and n = 2 
healthy subjects were excluded from the analysis because of excessive 
motion ( > 60% of volumes with a framewise displacement of more 
than 0.5 mm ( Power et al., 2012 )) or because of a low number of sig- 
nificant innovation frames ( < 131 significant innovation frames over 
a total of 808 vol). Importantly, patients and controls had compara- 
ble head movements (mean frame displacement: 0.28 ± 0.009 mm for 
patients and 0.32 ± 0.03 mm for healthy subjects, respectively, non- 
significant Wilcoxon Ranksum Test; and percentage of volumes with 
framewise displacement of more than 0.5 mm ± STD: 16.11 ± 16.09% 

and 16.55 ± 15.04%, for patients and healthy subjects, respectively, 
non-significant Wilcoxon Ranksum Test). This confirms that the differ- 
ences found in the iCAP characteristics are not resulting from differences 
in head movement between the two groups. 

2.2. Experimental protocol 

Patients underwent a maximum of three testing sessions ( Table S1 ): 
within 1–2 weeks ( n = 103), 3 months ( n = 72), and 12 months ( n = 54) 
after the lesion (see ( Siegel et al., 2018 ) for motivations and percent- 
ages of patients lost over the three time points). Healthy control sub- 
jects participated in two testing sessions three months apart in order 
to assess test-retest reliability of the extracted measures. Each testing 
session consisted of seven resting state fMRI runs, each including 128 
vol (30 min total) and a neuropsychological assessment. Imaging and 
behavioral testing sessions were usually performed on the same day. 

2.3. Neuropsychological assessment 

Participants underwent a comprehensive battery of 44 behavioral 
tests across four behavioral domains language, memory, motor, at- 
tention and visual function, chosen to represent a wide range of the 
most commonly identified deficits in stroke patients. Scores were only 
recorded for tasks that subjects were able to complete. Therefore, differ- 
ent domains include different numbers of subjects ( Table S1 ). In order to 
isolate clusters of deficits based on these different measures, we applied 
principal component analysis (PCA) on the behavioral data for each do- 
main separately (e.g., motor, language, attention, spatial memory, and 
verbal memory) following our previous method ( Corbetta et al., 2015 ; 
Ramsey et al., 2017 )) (see Behavioral domain scores for details). 

2.4. Imaging acquisitions 

All imaging was performed using a Siemens 3T Tim-Trio scanner 
and a standard 12-channel head coil. The MRI protocol included struc- 
tural and functional scans. Structural scans included: (i) a sagittal T1- 
weighted MPRAGE (TR = 1950 msec, TE = 2.26 msec, flip angle = 90°, 
voxel size = 1.0 × 1.0 × 1.0 mm); (ii) a transverse T2-weighted turbo spin 
echo (TR = 2500 msec, TE = 435 msec, voxel size = 1.0 × 1.0 × 1.0 mm); 
and (iii) sagittal fluid attenuated inversion recovery (FLAIR) (TR = 750 
msec, TE = 32 msec, voxel size = 1.5 × 1.5 × 1.5 mm). Resting state 
functional scans were acquired with a gradient echo EPI sequence 
(TR = 2000 msec, TE = 27 msec, 32 contiguous 4-mm slices, 4 × 4 mm 

in-plane resolution) during which participants were instructed to fixate 
a small cross white cross centered on a screen with a black background 
in a low luminance environment. 

2.5. Behavioral domain scores 

Dimensionality reduction was performed on the behavioral data as 
described in detail in ( Corbetta et al., 2015 ; Ramsey et al., 2017 ). First, 
tasks were categorized as attention, spatial memory, verbal memory, 

language, and motor. A PCA was run on the behavioral data of the ses- 
sion at 1–2 weeks post-lesion and the first component was used as a 
domain score for each category separately. The component scores for 
subsequent time points and for the age-matched controls were gener- 
ated by normalizing the original data based on the sub-acute values and 
projecting them in the PCA space. Then, each of the components and 
time-points was z-scored based on the first measurement of the healthy 
control group, allowing comparisons across timepoints and behavioral 
domains. Patients with a score > / < 2 standard deviations were identi- 
fied as “patients with/without severe acute deficits ”. For each behav- 
ioral domain, we followed the same procedure as ( Ramsey et al., 2017 ) 
and conducted an ANOVA across the three timepoints comparing pa- 
tients with and without severe acute deficits. PCA components for the 
different behavioral domains were similar to those previously reported 
( Corbetta et al., 2015 ; Ramsey et al., 2017 ). Specifically, in attention, 
the first component described 24.7% of variance and was strongly re- 
lated to measures of attentional field bias such as the total number of 
miss items in Mesulam cancelation test ( r = 0.61), and the accuracy 
( r = 0.85) and reaction time ( r = 0.72) in the Posner task. For the mo- 
tor domain, the first two components (explained variance 40.0% and 
32.2% respectively) correlated with left and right motor function. In lan- 
guage the first component accounted for 77.3% of the variance and cor- 
related with tasks of auditory comprehension, expression, and reading 
( r > 0.81). Finally, for spatial memory the first component (explained 
variance 61%) was correlated with measures of visuospatial memory 
such as immediate ( r = 0.87) and delayed recall ( r = 0.90) of visual 
information on the Brief Visuospatial Memory Test; whereas for verbal 
memory the first factor (explained variance 74.9%) correlates with mea- 
sures from the Hopkins Verbal Learning Test such as delayed recall of 
words ( r = 0.96). Importantly, results were similar if considering all the 
time points in the PCA. Indeed, the correlation between the recovery 
calculated from the PCA that considered only the first time point and 
the recovery calculated from the PCA that considered all time points 
was high (mean ± STD over behavioral domains: 0.96 ± 0.05). This fur- 
ther supports that the post-stroke behavioral impairment is genuinely 
the main source of population variance in the study. 

2.6. fMRI data pre-processing 

MRI scans were pre-processed using a pipeline adapted from our pre- 
vious studies ( A. Tarun et al., 2020 ; Zöller et al., 2019 ; Zoeller et al., 
2019 ) that used SPM8 ( http://www.fil.ion.ucl.ac.uk/spm/ ). After re- 
alignment of functional scans, we applied spatial smoothing with an 
isotropic Gaussian kernel of 5-mm full-width at half-maximum and 
coregistered structural scans to the functional mean. Individual tissue 
(white and gray matter, and cerebrospinal fluid (CSF)) maps were seg- 
mented from the T1 image. Then, the first ten functional scans were dis- 
carded, resulting in T = 118 vol per run (for a total of 826 vol per subject 
– i.e., 118 ×7 runs). The following sources of spurious variance were re- 
gressed out from these BOLD time series: (i) six parameters obtained by 
rigid body correction of head motion, (ii) average white matter and CSF 
signals. Finally, for each session fMRI runs were spatially realigned to 
the functional mean of the first run. 

2.7. Extraction of large-scale brain networks 

In order to extract large-scale brain networks and their temporal 
characteristics we deployed the iCAP framework ( Karahano ğlu and Van 
De Ville, 2015 ) ( Fig. 1 ), which is based on the detection of significant 
changepoints in deconvolved fMRI time series. For this, we first applied 
the Total Activation framework (TA ( Karahano ğlu et al., 2013 )), which 
applies hemodynamically informed deconvolution to the pre-processed 
fMRI time series (native space) of each subject and run separately, to re- 
liably retrieve activity-inducing time courses. Then, for each subject and 
session, activity-inducing time courses of all runs were concatenated, re- 
moving three volumes at each intersect (i.e., 808 vol kept in total per 
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Fig. 1. Dynamic functional connectivity framework | Functional images from individual subjects are denoised to circumvent the effect of various sources of noise. 

The hemodynamic blur is subsequently removed using hemodynamic-informed deconvolution, which reveals the activity-inducing signals. The innovation frames 

are then obtained by temporal derivation. A two-step thresholding (temporal and spatial) is applied to select significant innovation frames (i.e., transients), which 

undergo temporal clustering over subjects to obtain stable iCAPs. The latter are fitted back to the individual activity inducing signals to recover temporal profiles of 

the iCAPs for further time-resolved analysis. For each participant, session, and iCAP, we then computed the average duration over the total acquisition length. 

subject and session) and activation change-points were computed as the 
temporal derivative of these activity-inducing signals. Significant acti- 
vation change-points or innovations frames (i.e., frames with significant 
transitioning activities - transients) were selected with a two-step thresh- 
olding procedure with temporal and spatial thresholds selected based on 
previous work ( Karahano ğlu and Van De Ville, 2015 ; A. Tarun et al., 
2020 ; Zöller et al., 2019 ; D.M. Zöller et al., 2018 ; Zoeller et al., 2019 ; 
Piguet et al., 2021 ; Kinany et al., 2020 ). This two-step thresholding al- 
lowed to select only frames that contained significantly transient ac- 
tivity and to avoid including spurious connectivity patterns. The pur- 
pose of the temporal thresholding was, for each voxel, to find the time 
points where the activity was significantly high (i.e., positive)/low (i.e., 
negative). For that, we defined a threshold based on phase-randomized 
surrogate data. Specifically, a surrogate distribution was obtained by 
applying TA on phase randomized data and a 1% confidence interval 
was used to select significant voxels. We did that for all voxels and we 
thus obtained, for each time point, a map of significant positive or neg- 
ative transients, i.e., a map of regions that are jointly activating (i.e., 
positive frames) or jointly deactivating (i.e., negative frames). We then 
applied spatial thresholding on these maps, to only select those that have 
more than 5% of significant voxels (i.e., transients). Transients were 
then normalized to the MNI space considering the lesion mask as a prior 
for an additional tissue class in the segmentation procedure ( Brett et al., 
2001 ), concatenated across all subjects (i.e., patients and healthy sub- 
jects) and sessions, as also done in our previous work comparing pa- 
tients and healthy subjects ( Zöller et al., 2019 ; Piguet et al., 2021 ). 
Transients were then fed into a temporal k-means clustering to obtain 
large-scale resting-state networks, the iCAPs. The optimum number of 
clusters was determined by evidence accumulation ( Fred and Jain, 2002 ; 
Fred and Jain, 2005 ) (see Figures S2a ). Briefly, the k-means cluster- 
ing was done for K values ranging from 10 to 24, in order to obtain 
a co-association matrix summarizing how often two frames were clus- 
tered together. A second phase of clustering was performed using this 
co-association matrix and, this time, hierarchical clustering with two 
different linkage functions (average and weighted). We then computed 
the percentage of agreement between these two linkage functions, as 
well as with the k-means solution. The number of iCAPs was chosen 
as the number that showed the highest percentage of agreement, thus 
resulting in the extraction of 16 iCAPs ( see Figure S2a ). Finally, subject- 
specific iCAP time courses were obtained for each subject and session 
by transient-informed spatiotemporal back-projection of the 16 spatial 
maps (i.e., the large-scale resting-state networks extracted when clus- 
tering together transients concatenated across all patients and healthy 
subjects) onto the individual activity-inducing signals ( Figure S2b and 
( D.M. Zöller et al., 2018 )). Matlab code for the application of the 
whole framework can be found at https://www.c4science.ch/source/ 
iCAPs . 

2.8. Extraction of temporal properties 

In order to extract the iCAPs temporal properties, for each subject 
and session, the subject-specific iCAPs time courses were Z-scored and 
thresholded (|Z| > 1) to highlight active and de-active time points. 
The choice of this particular threshold was motivated by previous 
works that implemented TA and iCAP framework ( Zöller et al., 2019 ; 
D.M. Zöller et al., 2018 ; Kinany et al., 2020 ). For each iCAP, subject, and 
session we then computed the average duration of each iCAP occurrence 
as the number of time points that a iCAP was active or de-active. 

2.9. Lesion masking 

Individual T1 MRI images were registered to the MNI brain using FSL 
(FMRIB Software Library) FNIRT tool ( Andersson et al., 2007 ). We used 
the lesion masks already reported in our previous studies ( Siegel et al., 
2016 ; Salvalaggio et al., 2020 ; Siegel et al., 2018 ; Griffis et al., 2020 ; 
Griffis et al., 2019 ; Ramsey et al., 2017 ). In order to obtain them, le- 
sions were manually segmented on individual structural MRI images 
obtained 1–2 weeks post-lesion using the Analyze biomedical imaging 
software system ( Robb and Hanson, 1991 ). Special attention was given 
to distinguish lesion from CSF, hemorrhage from surrounding vasogenic 
edema, and to identify the degree of periventricular white matter dam- 
age present. In hemorrhagic strokes, edema was included in the lesion. 
The staff that was involved in segmenting or in reviewing the lesions 
(M.C. and Alexandre Carter) was blind to the individual behavioral data. 
We computed the topography of the lesion as the sum of all lesion masks 
over the 103 patients. 

2.10. White matter tracts disconnections 

In order to quantify the damages to the different cortical and subcor- 
tical white matter tracts, we used our previous approach ( Griffis et al., 
2020 ; Griffis et al., 2019 ). Specifically, for each patient, we intersected 
the lesion mask with a streamline tractography atlas and we quanti- 
fied the proportion of streamlines disconnected for each tract. For the 
tractography atlas, we used a publicly available diffusion MRI stream- 
line tractography atlas ( Yeh et al., 2018 ), which consisted of 70 tracts: 
65 neuroanatomically defined fiber bundles corresponding to commis- 
sural, association, projection, brainstem, and cerebellar pathways (cra- 
nial nerves were not included), and the corpus callosum split into 5 seg- 
ments ( Griffis et al., 2020 ; Griffis et al., 2019; Tzourio-Mazoyer, 2002 ) 

2.11. Statistical analysis 

2.11.1. Stability of iCAP spatial patterns 

First, we obtained iCAP spatial patterns for each individual and 
session by averaging significant innovation frames belonging to the 

4 
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Fig. 2. iCAP networks and spatial features | A. Number of transients (or significant innovation frames) including both positive and negative frames expressed in 

percentage of the total number of frames for the two sessions of the healthy control subjects (in cyan) and for the three sessions of the stroke patients (in orange). 

B. Spatial patterns (displayed in Montreal Neurological Institute coordinates) for the 16 innovation-driven coactivation patterns (iCAPs) retrieved from all subjects, 

including both sessions of the healthy control subjects and the three sessions of the stroke patients. Blue values denote the total number of significant innovation 

frames of each cluster (i.e., iCAP) and purple values indicate the stability of each cluster calculated as the mean cosine similarity from the centroid over subjects 

both healthy controls and patients (mean ± SD over subjects) (see Figure S3d for a separated analysis between healthy subjects and patients). AUD, auditory; DMN, 

default mode network; cereb, cerebellum. C. Dice coefficients between iCAP spatial patterns for healthy controls (HC) and patients (P) averaged over the 16 iCAPs. 

corresponding subject and session. For each iCAP, we then computed 
iCAP stability as the average cosine similarity between the cluster cen- 
troid (i.e., the global iCAP map) and the individual subject iCAP maps. 
We performed this analysis both considering healthy subjects and stroke 
participants together and separating the two groups. In order to better 
characterize the iCAPs spatial patterns and evaluate whether they were 
impacted by the presence of the stroke lesions, we computed the overlap 
between the locus of the lesion and the iCAPs maps. For this, we bina- 
rized the topography of the lesion using a threshold of 1 4 of the maximum 

values of the summed binary masks over all 103 stroke patients (i.e., 25) 

and each iCAP map with a threshold of Z = 1.5 (i.e., same threshold of 
Fig. 2 ). We then calculated the dice coefficients for each iCAP map. 

2.11.2. Group comparisons of iCAP spatial patterns 

For each group and testing sessions, iCAP spatial patterns were ob- 
tained by averaging significant innovation frames belonging to the cor- 
responding group and session. The group- and/or session-specific spatial 
patterns were then compared using dice coefficient. Spatial maps were 
thresholded with a threshold of Z = 1.5 (i.e., same threshold of Fig. 2 ) 
before computing the dice coefficients. 

5 



E. Pirondini, N. Kinany, C.L. Sueur et al. NeuroImage 255 (2022) 119201 

Fig. 3. Temporal features: comparison between 

healthy controls and patients | A. We used 

spatiotemporal transient-informed regression to 

derive iCAP time courses at the subject-level 

and to compute the average duration of each 

iCAP. Stroke patients showed a varied pattern 

of longer and shorter network activations when 

compared to healthy subjects. B. Confusion ma- 

trix for patients and healthy controls for the LDA 

classifier averaged over folds and groups (high- 

est results obtained when considering 4 iCAPs). 
∗ p < 0.05; ∗ ∗ p < 0.003 (non-parametric per- 

mutation testing). C. LDA weights for the fea- 

tures that have been selected more than 50% 

over folds and subgroups (mean ± SD over folds 

and patients’ subgroups). D. Linear combination 

of the features that have been selected more than 

50% over folds and subgroups weighted by the 

LDA weights displayed in Montreal Neurologi- 

cal Institute coordinates. Blue represents loca- 

tions with shorter duration for stroke patients; 

whereas orange represents locations with longer 

duration. 

2.11.3. Stability of iCAP durations 

Before investigating stroke-related changes in temporal dynamics of 
large-scale resting-state networks, we first evaluated the reliability of 
iCAP temporal properties in the control group. To this end, we assessed 
whether iCAP durations were stable within- and between-individuals in 
healthy subjects. Within-individuals stability was assessed by comparing 
the iCAP durations between the two sessions using a paired Wilcoxon 
signed rank test False Discovery Rate (FDR) corrected ( Benjamini and 
Yekutieli, 2001 ). For the between-individuals comparison, instead, we 
randomly split the healthy subjects in two groups (ten different ran- 
dom splits were generated) and we compared, for each split, durations 
between the two groups using Wilcoxon ranksum test FDR corrected 
( Benjamini and Yekutieli, 2001 ). We performed this analysis both for 
time point 1 and time point 2. 

2.11.4. Group comparisons of iCAP durations 

In order to compare iCAP durations between patients and healthy 
control subjects, we deployed a multivariate analysis and specifically a 
Bayesian classifier, specifically a LDA ( Fisher, 1936 ). Indeed, we hypoth- 
esized that the changes were not occurring in a single iCAP. We built 
a two-class LDA classifier (accounting for different covariance matrices 
for each class) using the durations of the 16 iCAPs. For this, because of 
the unbalance in number between healthy subjects and patients ( n = 38 
healthy subjects - 19 per session, and n = 229 patients - 103 for 1–2 
weeks, 72 for 3 months, and 54 for one year) we split the dataset in 
5 groups containing both sessions of the healthy subjects (i.e., in total 
38 healthy subject observations) and all sessions of around 20 patients 
(i.e., in total around 45 ± 1 patient observations). We have performed 
an LDA analysis for each group separately. For each group, we then per- 
formed a cross-validation schema with 4 folds with both sessions of 5 
healthy subjects (i.e., in total 10 healthy subject observations) and all 
sessions of around 5 patients (i.e., in total 11 ± 1 patient observations) 
per fold. For each fold, to rank the features of the classifier, we cal- 
culated the discrimination power for the two classes (i.e., patients and 
healthy controls) for each feature separately, using a two-sample Mann- 
Whitney test. Next, we ranked the features by their absolute standard- 
ized u-statistic obtained from this test. In the next stage, we sequentially 
added feature after feature and tested classification accuracy and area 
under the receiver operation characteristics (ROC) curve (AUC) in the 

left-out subjects ( Pirondini et al., 2020 ). To further balance the two pop- 
ulation groups, we have used a probability of 0.5 for each population 
group in the LDA classifier. Importantly, all the sessions of a subject 
were removed in the cross-validation schema. We averaged accuracy 
and AUC over folds and groups. Finally, in order to select the most dis- 
criminative features over folds and groups, we have counted how many 
times an iCAP was selected over folds and groups. We then considered as 
most discriminative features those that were selected at least 50% of the 
cases. To assess the statistical significance of the classification, for each 
group and fold, we built N = 1000 classifiers with randomly assigned 
labels at each permutation with the number of subjects matching the 
actual grouping. We then repeated the feature selection procedure used 
above calculating the discrimination power for the two random classes 
(i.e., patients and healthy controls) for each feature separately. Finally, 
we estimated AUC and classification accuracy for each permutation. For 
each repetition we averaged accuracy and AUC over folds and groups 
(i.e., random classification accuracy and AUC). For both measures, p- 
values were obtained as 1 − 

∑𝑁 

𝑖 =1 
𝑝 

( 𝑁+1 ) where p corresponds to the cases 

where the original AUC and/or classification accuracy are above random 

AUC and/or classification accuracy and N the total number of random 

classifiers (i.e., 1000). 

2.11.5. Validation of LDA weights 

In order to exclude that the changes in iCAPs duration between 
healthy subjects and patients were an artifact of the lesion, we eval- 
uated the overlap between the LDA weights and the locus of the lesion. 
Specifically, we first obtained a linear combination of the features that 
were selected at least 50% over folds and subgroups (i.e., 5 most discrim- 
inative features) weighted by the LDA weights. We then binarized this 
map using a threshold of -/ + 0.5 (i.e., same threshold used in Fig. 3 ) 
and computed the dice coefficient between this binarized map and a 
binarized topography of the lesion. The topography of the lesion was 
obtained using a threshold of 1 4 of the maximum values of the summed 
binary masks over all 103 stroke patients (i.e., maximum value = 25). 

2.11.6. Partial least squares correlation 

We deployed partial least squares correlation (PLSC) ( Zöller et al., 
2019 ; Zöller et al., 2017 ; D. Zöller et al., 2018 ; Kebets et al., 2019 ; 
Delavari et al., 2021 ) to evaluate multivariate patterns of correlation 
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between iCAP durations and: (i) white matter disconnections; (ii) be- 
havioral scores and recovery. 

PLSC has been previously successfully employed to characterize co- 
varying patterns of structural and functional connectivity in healthy in- 
dividuals, and it is nowadays considered a clinically relevant method 
( Zöller et al., 2019 ; Zöller et al., 2017 ; D. Zöller et al., 2018 ; Kebets et al., 
2019 ; Delavari et al., 2021 ; Krishnan et al., 2011 ). It seeks to define 
linear combinations of two data matrices ( X , i.e., the brain networks 
properties – iCAP durations, and Y, i.e., the anatomical (i) or behav- 
ioral variables (ii)) that maximally explain the covariance between the 
two matrices. The first step in PLSC is the computation of the corre- 
lation matrix between X and Y ( R = X’Y ). In our approach, X and Y 

were z-scored across subjects before correlation. Then R is decomposed 
in N latent variables, or “correlation components ” (where N is the min- 
imum number between the number of included behavioral/anatomical 
variables and the number of iCAPs), using singular value decomposition 
R = USV’ with U’U = V’V = I . Each correlation component has a singular 
value (on the diagonal of S ) that specifies the explained correlation, 
as well as Nx iCAP durations saliences or “duration weights ” (rows of 
V’ ) and Ny behavioral/anatomical saliences or “behavioral/anatomical 
weights ” (columns of U ). The saliences (which lie between − 1 and 
1) indicate how strongly each variable contributes to the multivari- 
ate behavioral-brain/anatomical-brain correlation in a certain corre- 
lation component. We used permutation testing with 1000 permuta- 
tions to evaluate if any of the correlation components was significant 
and bootstrapping with 500 bootstrap samples with replacement to 
evaluate the stability of the behavior/anatomical and brain weights. 
Brain and behavioral/anatomical saliences were recalculated for every 
bootstrap sample, resulting in a typical bootstrap distributing of the 
salience values. Saliences were considered significant if lower/higher 
than lower/upper bound of 95% confidence interval of bootstrapping 
distributions. 

Here below more details about the two PLSC analysis performed in 
this study: 

1 we conducted a PLSC analysis with duration of the 16 iCAPs as brain 
variables and with white matter tract disconnections as anatomi- 
cal variables. We considered in the PLSC both patients with severe 
acute deficits (i.e., > 2 SD from healthy subjects at 1–2 weeks post- 
lesion) and patients with less severe acute deficits (i.e., < 2 SD from 

healthy subjects) without distinction. We computed a PLSC for all 
the three time points separately (i.e., 1–2 weeks; 3 months; 1-year 
post-lesion). PLSC analysis p-values were corrected for multiple com- 
parisons across the three time points domain using FDR at q < 0.05 
( Benjamini and Yekutieli, 2001 ). Because of the difference in num- 
ber of patients between the three time points ( n = 103 for 1–2 weeks, 
n = 72 for 3 months, and n = 54 for 1-year post-lesion), we assessed 
whether the significance in the PLSC was influenced by the num- 
ber of patients. Specifically, we repeated the PLSC between white 
matter tract disconnections and iCAPs duration for 1–2 weeks post- 
lesion with 100 groups of 72 (i.e., number of patients at 3 months) 
randomly selected patients and 100 groups of 54 (i.e., number of 
patients at 1-year) randomly selected patients and we checked the 
significance of the PLSC for each group. 

2 Because patients with/without severe acute deficits showed different 
recovery trajectories over time (see Figure S1 and ( Ramsey et al., 
2017 )), we computed a group PLSC analysis between the 16 iCAP 
durations and the behavioral scores for three groups: patients with- 
out severe acute deficits, patients with severe acute deficits, and 
healthy controls as normative data. Group PLSC analysis entails that 
a correlation matrix is computed per group (in this case healthy con- 
trols R HC , patients with less severe acute deficits R ND , and patients 
with severe acute deficits R D ). The common correlation matrix R 

is then computed by concatenating R HC , R ND and R D resulting in 
3 Ny behavior saliences. We can then compute the so called “brain 
scores ” by projecting every individual’s iCAP durations onto the re- 

spective brain weights with Lx = XV . PLSC analysis was computed for 
each neuropsychological domain (attention, spatial memory, verbal 
memory, language, and motor) separately, as only a limited number 
of participants performed the assessment for all four classes ( Table 
S1 ). In order to capture multivariate patterns of correlation with 
the behavioral measures and the recovery, we have used an inno- 
vative way of coding the design matrix for the behavioral scores 
( Delavari et al., 2021 ) that includes two behavioral variables: the 
mean behavior in subjects, and the delta behavior in subjects (see 
Fig. 5 A for a schema of the PLSC). The former assigned the mean 
value of the first PCA component of a subject across all visits for 
each time point. The latter corresponded to the difference between 
the actual value of the first PCA component of a subject at a time 
point and the subject’s mean value of the first PCA component. It is 
worth noting that, by construction, mean behavior and delta behav- 
ior are orthogonalized and can be interpreted as the cross-sectional 
and longitudinal effect of behavior, respectively. We then defined 
“inter behavior ” as the interaction between mean behavior and delta 
behavior, which enables the capture of concave or convex (i.e., U- 
shaped) recovery trajectories that we hypothesized to be different 
between patients with and without severe acute deficits (see Fig- 
ure S1 and ( Ramsey et al., 2017 )). This design matrix allows us to 
correctly capture the within- and between-subject effect of recovery 
highlighting these different trajectories. PLSC analysis p-values were 
corrected for multiple comparisons across behavioral domain using 
FDR at q < 0.05 ( Benjamini and Yekutieli, 2001 ). 

3. Results 

3.1. Lesion topography and behavioral profile of patients 

We studied a large population of stroke patients and age-matched 
healthy subjects (i.e., in total 267 acquisitions, Table S1 ) that was 
partially presented in previous publications ( Siegel et al., 2016 ; 
Salvalaggio et al., 2020 ; Siegel et al., 2018 ; Griffis et al., 2020 ; 
Griffis et al., 2019 ; Corbetta et al., 2015 ; Ramsey et al., 2017 ). Briefly, 
first-time stroke patients with clinical evidence of impairment were 
recorded longitudinally: 1–2 weeks ( n = 103), 3 months ( n = 72), and 
12 months ( n = 54) after the lesion. The healthy control group ( n = 19) 
also underwent two imaging sessions at a distance of 3 months. Lesion 
volume varied greatly over patients (ranging from 0.1 cm 

3 to 277.02 
cm 

3 , mean ± SD volume: 33.66 cm 

3 ± 49.51 cm 

3 ), with the highest 
overlap found in white matter and subcortical regions ( Figure S1a ). 
Specifically, the most affected tracts were the corticospinal tract, the 
fronto- and parieto-pontine tract, the extreme Capsule (EMC), and the 
inferior fronto-occipital fasciculus (IFOF) ( Figure S1b-c ). Prior to each 
fMRI scan, patients were tested with an exhaustive neurobehavioral 
battery. We applied principal component analysis (PCA) on these be- 
havioral data to isolate clusters of deficits for each domain separately 
(e.g., motor, language, attention, spatial memory, and verbal mem- 
ory) ( Corbetta et al., 2015 ). We found factors analogous to our previ- 
ous works (see Behavioral domain scores section ( Corbetta et al., 2015 ; 
Ramsey et al., 2017 )) and also similar recovery effects ( Corbetta et al., 
2015 ; Ramsey et al., 2017 ). Indeed, patients with severe acute deficits 
(i.e., > 2 SD from healthy subjects at 1–2 weeks post-lesion) got closer 
to the healthy subjects within the first three months post-lesion (Figure 
S1d). Instead, patients with less severe acute deficits (i.e., < 2 SD from 

healthy subjects) had stable performances over sessions comparable to 
those of the healthy subjects. Importantly, the global variance over sub- 
jects was found to decrease over time points, suggesting that the outlier 
population defined at the first time point reflects actual deficits in the 
acute state, rather than random error in the behavioral indicators. More- 
over, this observation indicates that subsequent changes are primarily 
driven by neurological recovery and not by a mere regression to the 
mean of outlying values defined at the first time point. 

Whole brain dynamics is preserved in patients 
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We applied Total Activation on the denoised BOLD time courses 
to retrieve robust transient activity (i.e., frames with highly chang- 
ing activity, the so-called significant innovation frames), individually 
for the 267 acquisitions considered ( Fig. 1 ). Patients and healthy sub- 
jects had a comparable number of transients considering both positive 
and negative frames (i.e., time points with jointly activating - positive 
frames - and jointly deactivating - negative frames - regions; mean ± 

SD - healthy controls: 43.8 ± 12.0; patients 1–2 weeks: 45.8 ± 22.4; 3 
months: 43.4 ± 19.5; 1 year: 43.7 ± 20.4, expressed in percentage of the 
total number of frames for each subject - Fig. 2 a ), highlighting that the 
whole brain overall amount of dynamic fluctuations was preserved after 
stroke. Yet, dynamics of specific brain regions could still be affected by 
the lesion. For this reason, we then extracted spatial patterns of large- 
scale networks and we computed dynamic features for each network 
individually. 

Resting-state activity can be decomposed into spatial maps cor- 
responding to known functional networks 

Transients of both healthy subjects and patients at different time 
points were fed to a k-means clustering to obtain stable innovation- 
driven co-activation patterns (iCAPs), which could be spatially and tem- 
porally overlapping. The number of clusters was determined using ev- 
idence accumulation and, as a result, 16 iCAPs were extracted ( Figure 
S2a ). The iCAPs corresponded to well-known resting-state networks ob- 
tained with other approaches ( Van Den Heuvel and Pol, 2010 ; Lee et al., 
2013 ), in line with our previous results in different datasets ( Fig. 2 b and 
Table S2 ) ( Karahano ğlu and Van De Ville, 2015 ; A. Tarun et al., 2020 ; 
Zöller et al., 2019 ; Piguet et al., 2021 ). Importantly, the spatial profile of 
the iCAPs did not appear to be influenced by the presence of the lesions, 
as demonstrated by a minimal overlap between the lesion locus and the 
iCAPs maps ([0 0.05] range of dice coefficients over iCAPs). Specifically, 
the iCAPs included sensory-related networks such as primary and sec- 
ondary visual areas (iCAP 6), auditory and language network (iCAP 5), 
with high activations in Heschl gyrus and rolandic operculum, and sen- 
sorimotor network (iCAPs 3 and 8), which included pre-, post-, and para- 
central areas, supplementary motor area, and middle cingulum (only for 
iCAP 3). Two iCAPs (( Fox et al., 2005 ) and ( Bullmore and Sporns, 2009 )) 
represented the visuospatial/ventral attention network and comprised 
the primary (iCAP 1) and secondary (iCAP 11) visual areas along with 
the precuneus. There was an additional task-related iCAP, the fronto- 
parietal network (iCAP 4), with high activations in the frontal and pari- 
etal lobes together with anterior and middle cingulate cortex (ACC and 
MCC). As previously reported ( Karahano ğlu and Van De Ville, 2015 ; 
A. Tarun et al., 2020 ; Zöller et al., 2019 ), the Default Mode Network 
(DMN) was decomposed into a frontal part (iCAP 12) including frontal 
lobe and ACC, and a posterior part (iCAP 10) comprising the cuneus, the 
precuneus, and the superior and inferior parietal lobes. Four iCAPs in- 
cluded regions of the cerebellum (iCAPs 2, 7, 13, and 16). Yet, iCAPs 13 
and 16 were specific to the anterior (iCAP 13) and posterior cerebellum 

(iCAP 16); whereas iCAP 2 included as well secondary visual areas and 
iCAP 7 hippocampal areas. The remaining iCAPs comprised regions of 
the salience network, with iCAP 15 encompassing middle and superior 
frontal lobe and ACC, and iCAP 9 related to the inferior temporal lobe, 
the hippocampus and the amygdala. 

iCAP spatial maps are similar between patients and controls 
Prior to evaluating differences between patients and healthy con- 

trols, we first assessed between-session spatial replicability of the iCAPs 
in healthy subjects. The high similarity of the spatial patterns (mean dice 
coefficients over iCAPs ± SD: 0.85 ± 0.04 Figure S3a ) emphasized the 
ability of the iCAP framework to extract reliable and stable networks. 
Interestingly, spatial maps were also very similar between patients and 
healthy controls (mean dice coefficients over iCAPs ± SD at 2 weeks: 
0.87 ± 0.03; 3 months: 0.88 ± 0.03; 1 year: 0.88 ± 0.04 - Fig. 2 c and 
Figure S3b ), as previously reported using static functional connectivity 
( Siegel et al., 2016 ). Finally, spatial maps were also highly compara- 
ble between left and right damage patients (mean dice coefficients over 
iCAPs ± SD: 0.90 ± 0.04 Figure S3c ). 

Patients exhibited a varied pattern of longer and shorter resting- 
state network activations 

The stability of the spatial maps over sessions ( Figure S3a-c ) and 
groups ( Fig. 2 c ) highlighted the robustness of the brain’s functional ar- 
chitecture, as described using iCAPs. We capitalized on this observa- 
tion to investigate the temporal properties associated with these large- 
scale brain networks. To this end, we used spatiotemporal transient- 
informed regression to derive iCAP time courses at the subject-level 
and to compute the average duration of each iCAP ( Fig. 1 ). Similarly 
to our assessment of spatial replicability, we evaluated the within- and 
between-individual temporal replicability in the healthy subjects. Given 
the stability of average iCAP durations in the healthy control group ( p > 

0.31 - FDR corrected ( Robb and Hanson, 1991 ) for the within-subjects 
comparison, see Figure S3ed ; and p > 0.15 - FDR corrected ( Robb and 
Hanson, 1991 ) for the between-subjects comparison), we then probed 
whether this temporal measure could be leveraged as a discriminative 
feature to distinguish stroke patients and healthy subjects ( Fig. 3 a) . Con- 
sidering that patients present with a combination of deficits in different 
domains, which may reflect dysfunction across multiple brain networks 
( Carter et al., 2012 ), we opted for a multivariate approach, which con- 
siders a combination of multiple features instead of individual networks 
( Haller et al., 2014 ). Indeed, we hypothesized that the changes were not 
occurring in a single iCAP, but over a set of iCAPs, as further demon- 
strated from the correlation with the behavioral deficits. We performed 
a Linear Discriminant Analysis (LDA) with a cross-validation scheme 
( Fisher, 1936 ) that allowed to discriminate between the two groups with 
a significant accuracy (0.58 - p < 0.004), as illustrated by a diagonal 
confusion matrix ( Fig. 3 b ), and sensitivity-specificity, as emphasized 
by the area-under the curve (AUC: 0.58 - p < 0.004). 5 features were 
stable over patients’ subgroups and folds (i.e., features present more 
than 50% of the cases) and captured specific regions whose temporal 
profiles were affected in stroke patients. In particular, patients showed 
a longer duration in pre-central areas and in the anterior and medium 

cingulum. Instead, the occipital lobe and the postero-lateral cerebellum 

had a reduced duration ( Fig. 3 c-d ). A similar varied pattern of longer 
and shorter network activations was observed when looking at individ- 
ual iCAP durations of healthy controls and stroke patients at different 
points in time after lesion ( Figure S3f ). Additionally, the discriminatory 
weights had a minimum overlap with the locus of the lesion (dice co- 
efficient = 0.02), emphasizing that the changes in iCAPs duration were 
not an artifact of the lesion. 

Changes in duration are explained by disconnections within 

white-matter tracts 
In order to better understand the interplay between functional dy- 

namics and anatomy, we deployed a partial least square correlation 
(PLSC) analysis between iCAP average durations and disconnections 
within white-matter tracts ( Fig. 4 a ). We found a single significant com- 
ponent (p-value = 0.017 - FDR corrected; 𝜌 = 0.35), only for patients at 
1–2 weeks post-lesion. Importantly this was not explained by the higher 
number of patients at 1–2weeks post-lesion as compared to the other 
time points (the significance held also with a reduced number of sub- 
jects – 72 or 54 – in 81.5 ± 9.2% of the cases). Microstructural changes in 
the weeks/months following the stroke can be reasonably expected be- 
cause of inflammatory reactions as well as degenerative and neuroplas- 
tic processes, leading to further changes in the anatomical disconnec- 
tions. However, white matter disconnections were obtained only from 

structural images obtained at 1–2 weeks post-lesion and this could ex- 
plain why the PLSC were significant only for this time point. The longer 
duration of the iCAPs ( Fig. 4 b left panel ) was explained by the loss of 
white matter fibers ( Fig. 4 b right panel ), in particular of i) the pro- 
jection pathways, which connect cortical areas with subcortical nuclei 
and brainstem; ii) a few association pathways which connect disparate 
cortical areas including the cingulum, the EMC, the IFOF, and the un- 
cinate fasciculus; iii) the anterior and middle commissure; and iv) the 
fiber bundles inside the brainstem (i.e., the medial lemniscus and the 
spinothalamic tract). Interestingly, the fiber bundles in the cerebellar 
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Fig. 4. Interplay between functional dynamics and disconnection within white-matter tracts | A. We deployed a PLSC analysis between iCAP average durations and 

disconnections within tracts for patients at 2 weeks post-lesion ( Griffis et al., 2020 ; Griffis et al., 2019 ). B. Left panel: iCAP durations saliences for the significant 

PLS component ( p = 0.003) (mean ± SD over bootstrap repetitions); Right panel: disconnections within tracts saliences of the significant PLS component (mean 

± SD over bootstrap repetitions). Tracts were grouped in projection pathways, association pathways, commissural pathways, brainstem pathways, and cerebellar 

pathways following ( Yeh et al., 2018 ). GG Gray shadows indicate stable salience, i.e., saliences lower/higher than the lower/upper bound of 95% confidence interval 

of bootstrapping distributions (bootstrapping procedure with 500 random samples with replacement). F: fornix; C: cingulum; AC: anterior commissure; MC: medial 

commissure; STT: spinothalamic tract; ICP: inferior cerebellar peduncle. 

pathways, and specifically the inferior cerebellar peduncle had opposite 
saliences (i.e., positive saliences) highlighting a different behavior for 
the cerebellar structure, characterized by a lower average duration as 
compared to healthy controls. 

Changes in duration are associated with behavioral deficits and 

recovery 
We then assessed whether changes in iCAP durations correlated with 

clinical impairments and recovery, as estimated using the behavioral 
measures. We applied a second PLSC analysis, this time between the 
temporal measures and the behavioral data of the three time points, sep- 
arately for each domain ( Fig. 5 a ). Functional network durations showed 
significant correlations with recovery from attention, language, and spa- 
tial memory deficits (attention: p-value adjusted for multiple compar- 
isons = 0.05, 𝜌 = 0.23; language: p-value = 0.015, 𝜌 = 0.18; spatial 
memory: p-value = 0.018, 𝜌 = 0.18), but not from motor or verbal mem- 
ory impairments (p-value adjusted > 0.06). This observation parallels 
our previous findings regarding the relationship between brain modu- 
larity and behavior, in which a reduction in modularity was observed in 
the sub-acute stage, followed by a partial recovery, limited to attention, 
language and spatial memory ( Siegel et al., 2018 ). To further explore 
the clinical relevance of our results, we first investigated the saliences 
related to the behavioral data. We observed that they were only sig- 
nificant for patients with severe acute deficits, which were the ones 
showing the largest recovery over time ( Figure S1d ). We then inves- 
tigated the saliences pertaining to iCAP durations and highlighted that 

temporal patterns were behavior-specific (mean correlation ± SD over 
behaviors: 0.22 ± 0.08, Fig. 5 b ). Indeed, attention domain had saliences 
in the fronto-parietal network, the amygdala, the precuneus and the vi- 
sual cortex ( Fig. 5 c ). Spatial memory symptoms, instead, were mostly 
correlating with fronto-parietal and sensorimotor networks, the poste- 
rior part of the cerebellum, the amygdala, and the visual cortex. Finally, 
language-related deficits were specifically tied to the language network 
and primary and secondary visual areas. In order to probe the tempo- 
ral evolution of these brain functional components, we then projected 
the individual subject’s iCAP durations onto the significant multivariate 
brain saliences for healthy controls and for patients with severe acute 
deficits ( Fig. 5 d ). Intuitively the brain scores show how the iCAPs du- 
ration changes over time. Specifically, over time, the brain scores of 
stroke patients approached those of healthy controls (absolute distance 
between patients and healthy subjects at 1–2 weeks: 0.37, 1.80, and 
1.94 for language, attention, and spatial memory respectively; at 1-year 
post-lesion: 0.07, 1.37, and 0.94), suggesting that post-stroke network 
dynamics restored proportionally to behavioral improvement. 

4. Discussion 

In recent years, dynamic functional connectivity methods have been 
demonstrated to provide additional insights into the rich spatiotem- 
poral orchestration of spontaneous fluctuations as compared to static 
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Fig. 5. Interplay between functional dynamics and behavioral deficits | A. We deployed a PLSC analysis between iCAP average durations and behavioral scores and 

recovery for all patients and all sessions. B. Correlation matrix between iCAP durations saliences between the three behavior domains that had one significant PLS 

component (i.e., attention, language, and spatial memory). C. iCAP durations saliences for attention (blue), language (orange), and spatial memory (green). D. Brain 

scores obtained projecting the individual subject’s iCAP durations onto the significant (i.e., saliences lower/higher than the lower/upper bound of 95% confidence 

interval of bootstrapping distributions, which were determined by bootstrapping procedure with 500 random samples with replacement) multivariate brain saliences 

(i.e., Lx = XV, see Methods ) for healthy controls (black) and for patients with severe acute deficits (blue) for the three behavior domains and the three time points 

(i.e., 1–2 weeks, 3 months, and 1-year post-lesion) separately. Shadows represent SEM. 
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approaches ( Preti et al., 2017 ; Cohen, 2018 ; Karahano ğlu and Van De 
Ville, 2017 ; Hutchison et al., 2013 ), in particular for psychiatric con- 
ditions ( Bolton et al., 2020 ). However, the transition towards dFC in 
the context of stroke has so far remained limited ( Bonkhoff et al., 2020 ; 
A.K. Bonkhoff et al., 2021 ; A.K. Bonkhoff et al., 2021 ; Hu et al., 2018 ; 
Obando et al., 2019 ; Duncan and Small, 2018 ; Chen et al., 2018 ). While 
these studies nicely highlighted the advantage to use dFC to better 
capture reorganization of brain networks following stroke, they suf- 
fer from three main drawbacks: small sample sizes, major focus on 
motor deficits, and investigations limited to slow dynamical changes 
(sliding window approaches). Here we extended these results by ap- 
plying a state-of-the-art data-driven dynamic method, the iCAP frame- 
work in an extensive cohort of stroke patients ( n = 103) with heteroge- 
neous neurological syndromes and scanned longitudinally ( Siegel et al., 
2016 ; Salvalaggio et al., 2020 ; Siegel et al., 2018 ; Griffis et al., 2020 ; 
Griffis et al., 2019 ; Corbetta et al., 2015 ; Ramsey et al., 2017 ). We 
uncovered a temporal imbalance of network recruitment compared to 
healthy controls and showed how these dynamic changes articulate with 
anatomical and behavioral disruptions. 

Delving into network dynamics 
We deployed the iCAP framework and found sixteen large-scale 

brain networks, or iCAPs, whose spatial patterns agreed with previ- 
ous literature using the iCAP framework ( Karahano ğlu and Van De 
Ville, 2015 ; A. Tarun et al., 2020 ; Zöller et al., 2019 ; Piguet et al., 2021 ) 
as well as other statistical approaches ( Van Den Heuvel and Pol, 2010 ; 
Lee et al., 2013 ). Importantly, this spatial organization was robust over 
sessions in healthy subjects and had similar patterns in participants with 
stroke. In particular, networks were bilateral regardless of the side of 
the lesion, suggesting a preserved organization across brain regions. 
While this might seem in contradiction with the decrease in interhemi- 
spheric connectivity previously reported post-stroke ( Siegel et al., 2016 ; 
Griffis et al., 2019 ; Carter et al., 2010 ), it should be noted that fine- 
grained coordination between brain areas can be occulted when using 
classical static FC approaches ( Bonkhoff et al., 2020 ; A. Tarun et al., 
2020 ). For instance, the correlation between distinct brain areas exhibit- 
ing both positive and negative correlations in distinct time-windows 
would result in a low static functional connectivity, in spite of the dy- 
namic synchronization existing between these regions ( A. Tarun et al., 
2020 ). Therefore, it follows that a decrease in FC does not necessar- 
ily imply a decrease in global network activity. However, decreased FC 

might reflect an overall reduction in the efficiency of information trans- 
fer, which could manifest in the form of aberrant durations of functional 
networks ( Bullmore and Sporns, 2009 ; Zöller et al., 2019 ; Siegel et al., 
2018 ). 

To evaluate these time-varying properties, we thus derived subject- 
specific iCAP time-courses and computed average durations of activa- 
tion for each individual iCAP, a measure that cannot be explained in 
terms of static connectivity. Of note, a similar approach previously al- 
lowed to show the link between brain dynamics and risk factors for 
schizophrenia in 22q11.2 deletion syndrome ( Zöller et al., 2019 ). Here 
we first demonstrated that network durations were robust between- and 
within-individuals in healthy subjects highlighting the applicability of 
our method for clinical explorations. Importantly, our results were stable 
despite the small sample size of the control group, which yet was compa- 
rable to several previous works ( Karahano ğlu and Van De Ville, 2015 ; 
Kinany et al., 2020 ). In contrast, durations were affected post-stroke. 
Specifically, patients exhibited a varied pattern of longer and shorter 
network activations alluding to an “under-engagement ” in certain brain 
states coupled with an “over-engagement ” in others. These results, com- 
bined with the preserved overall amount of dynamic fluctuations (i.e., 
similar number of significant innovation frames between patients and 
healthy subjects), hint at a dynamical imbalance following stroke, rather 
than an overall shift towards a slower or a faster brain activity. A com- 
pelling observation was that networks usually associated in static anal- 
yses, such as the two sensorimotor networks (iCAPs 3 and 8) presented 
opposite engaging behaviors after lesions (see Fig. 3 and Figure S3f ). 

This suggests that intricate and non-stationary behavior are also present 
within overlapping brain regions, something that would be overlooked 
when relying on conventional static methods. 

Structural substrates of disrupted dynamics 
We then assessed whether this post-stroke imbalance was deter- 

mined by structural damages. Indeed, white matter connections, when 
intact, form the anatomical scaffold that mediates the dynamic fluctua- 
tions between networks ( A. Tarun et al., 2020 ; Calamante et al., 2017 ; 
Nozais et al., 2021 ). As such, interruptions in these connections may 
impact the brain’s functional organization, not only in the vicinity of 
the lesion, but also on a larger scale. In particular, disruption of white 
matter connections might affect the flow of information exchange be- 
tween distant brain regions, thus altering the dynamics of network tran- 
sitions and consequently their temporal characteristics. However, un- 
derstanding how the human brain orchestrates large-scale functional 
networks despite being constrained by a rigid anatomical substrate and 
how this orchestration is affected by lesions is still an open question in 
clinical neuroscience ( Zoeller et al., 2019 ; Muldoon et al., 2016 ). Here, 
we explored this relationship by probing how iCAP temporal properties 
varied with structural measures of disconnections ( Griffis et al., 2020 ; 
Griffis et al., 2019 ) and we found that altered durations were explained 
by the disruption of white matter tracts, particularly within the pro- 
jection pathways, as well as within the cingulum and the commissural 
pathways. Specifically, the projection pathways subserve the subcorti- 
cal integration of sensorimotor inputs and outputs between the cere- 
bral cortex and the peripheral system. The commissural pathways, in- 
stead, connect cerebral hemispheres. Both these pathways are involved 
in providing local and global efficiency ( Yeh et al., 2018 ), measures 
that are indicative of the capacity for parallel information transfer and 
integrated processing between, respectively, short- and long-distance re- 
gions ( Bullmore and Sporns, 2009 ). As such, disruptions of these tracts 
likely drive the widespread neurobiological processes occurring in the 
course of stroke recovery ( Siegel et al., 2018 ). 

Domain-specific behavioral correlates 
Finally, we assessed whether these lesion-induced changes in net- 

work dynamics correlate with behavioral impairments and recovery. To 
this end, we capitalized on the longitudinal nature of the dataset so as to 
assess short- and long-term recovery processes and on its multi-domain 
clinical assessments. Earlier observations indicated that most deficits 
restore within three months, with additional recovery, yet more lim- 
ited, up to one year following lesion ( Ramsey et al., 2017 ). Interestingly, 
these multi-scale recovery patterns were reflected in the temporal dy- 
namics of brain activity, as the initial imbalance observed in severely af- 
fected patients normalized towards the level of healthy subjects, mostly 
within the first three months. Thanks to the heterogeneous patient pop- 
ulation, we showed that these trends were significant only for attention, 
language and spatial memory disorders, as also observed for post-stroke 
decrease in network modularity in an earlier study ( Siegel et al., 2018 ). 
This suggests that both modularity and network duration are associ- 
ated with higher cognitive deficits, in the form of functional changes 
likely reflecting inter-hemispheric homotopic integration and within- 
hemisphere segregation ( Siegel et al., 2016 ). It is noteworthy that these 
alterations in static connectivity were not reflected in the spatial organi- 
zation of the large-scale networks but on their temporal durations. Im- 
portantly, recovery of motor and verbal memory deficits did not corre- 
late with changes in iCAPs duration. It should be noted that these results 
may be partially impacted by the choice of the threshold employed to di- 
vide patients without and with severe deficits (i.e., > 2 SD from healthy 
subjects in the subacute phase). Additionally, while changes in the pop- 
ulation variance over time suggest that longitudinal improvements in 
behavioral scores are primarily driven by neurological recovery, we 
cannot rule out the possibility that the variance at the first time point 
might reflect a combination of genuine deficits, baseline interindividual 
variability, and random error, in which case subsequent measurements 
would show partial regression to the mean. This should be considered 
when interpreting our results. However, while other thresholds could be 
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explored, this choice was consistent with our previous works 
( Siegel et al., 2016 ; Siegel et al., 2018 ; Corbetta et al., 2015 ; 
Ramsey et al., 2017 ). Importantly, this allowed direct comparison, 
and emphasized that the current these results parallel our previous 
findings in brain modularity changes ( Siegel et al., 2018 ). Interest- 
ingly, they seem at first to contradict recent works showing that dy- 
namic connectivity-derived parameters predict motor acute impair- 
ment and recovery ( Bonkhoff et al., 2020 ; A.K. Bonkhoff et al., 2021 ; 
A.K. Bonkhoff et al., 2021 ). However, this correlation seems to be lim- 
ited to the sensorimotor networks and not to large-scale brain net- 
works, which might hinder the correlation with the motor deficits. In- 
deed, motor deficits are known to be better predicted by lesion loca- 
tion ( Siegel et al., 2016 ) and to changes in the sensorimotor networks 
directly affected by the lesion, probably indicating that these functions 
rely less on information integration between large-scale networks. Com- 
plex cognitive functions (such as attention, memory, and spatial mem- 
ory), instead, are generated by integrations of inputs between different 
brain areas and so are probably more affected by widespread changes in 
functional connectivity ( connectional diaschisis ). Further supporting this 
differential nature of impairments, changes in duration were network- 
specific (e.g., only durations of auditory and visual networks correlated 
with language deficits). Finally, deficits and recovery were associated 
with distant brain regions, bringing new evidence to corroborate that 
stroke is not a focal disease but, instead, a network disease ( Carrera and 
Tononi, 2014 ; Allali et al., 2018 ). 

Clinical considerations 
In summary, we found that durations of large-scale resting-state 

networks were altered as a consequence of interruptions in white- 
matter tracts. The brain was, therefore, less resilient and modular after 
stroke, as previously hypothesized ( Siegel et al., 2018 ). Importantly, the 
restoration of the networks’ natural temporal properties, likely accom- 
panied by a restoration of this resilience, was crucial to achieve behav- 
ioral recovery, especially for cognitive deficits. Altogether, these results 
underscore the clinical relevance of network temporal properties, in par- 
ticular as regards their duration. Therefore, dynamic functional connec- 
tivity methods seem crucial to inform the therapeutic process in several 
ways. First of all, as demonstrated here, they could elucidate patho- 
physiology changes post-stroke informing whether the rehabilitation- 
mediated changes may be going in the right directions, approaching 
the brain functional organization observed in healthy subjects, or may 
be maladaptive. Second, they could be used to predict the patients’ 
outcome. In this regard, a recent work from Bonkhoff and colleagues 
( A.K. Bonkhoff et al., 2021 ) demonstrated for the first time that dy- 
namic connectivity-derived parameters outperform static connectivity 
measures in the prediction of acute impairment and recovery. Yet new 

works are now necessary to probe whether the iCAP durations can pre- 
dict the patients’ recovery. Finally, these time-resolved methods could 
capture potential therapeutic targets that could possibly be modulated, 
for instance using non-invasive brain stimulation. While such interven- 
tions have been frequently employed to improve motor recovery after 
stroke ( Guggisberg et al., 2019 ; Coscia et al., 2019 ; Koch and Hum- 
mel, 2017 ), only a restricted number of attempts have explored brain 
stimulation to treat post-stroke cognitive deficits ( Yin et al., 2020 ), 
despite several successful applications in psychiatry ( Drysdale et al., 
2017 ). In this field, recent investigations jointly considering anatomy 
and functional dynamics provided valuable insights to guide neuromod- 
ulation treatments ( Muldoon et al., 2016 ; Khambhati et al., 2019 ). In 
this regard, we foresee that investigating stroke-related disruptions us- 
ing dynamic approaches could help shed light on meaningful temporal 
properties, which are directly tied to the underlying anatomical sub- 
strate, and that can be more readily leveraged to tune neuromodulation 
parameters. Considering that brain stimulation approaches can change 
excitability of functional connections within and between cortical areas 
with a high temporal and topographical resolution ( Guggisberg et al., 
2019 ), tuning parameters based on temporal properties could enable 
a better modulation of large-scale brain networks with the aim to im- 

prove a patient’s clinical outcome. For instance, iCAP information could 
be used as a marker to guide neuromodulation protocols such as tran- 
scranial magnetic stimulation (TMS). The advent of multimodal record- 
ing and stimulation techniques such as TMS-fMRI is making this possi- 
ble ( Beynel et al., 2020 ). Yet this application still requires several steps 
including demonstrating that iCAP durations can be modified by TMS 
stimulation. However, only the use of dynamic methods enabling the 
study of the time-varying properties of brain networks can open such 
possibilities. Importantly for this, it is noteworthy that dFC methods do 
not require additional acquisition constraints for the patients. As such, 
clinical transitions to fMRI time-resolved methods appear not only nec- 
essary but also technologically possible. 
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