100 research outputs found

    Electrocaloric Cooling

    Get PDF
    The electrocaloric effect describes a reversible temperature change in dielectric materials submitted to an applied electric field. Adiabatic polarization raises their temperature, and adiabatic depolarization lowers it, analogous to temperature changes that occur when a gas is compressed or expanded. For refrigerator application, the reverse Brayton cycle is currently the most promising for practical implementation. The electrocaloric effect provides a large material efficiency. However, existing refrigerator prototypes lack from the absence of efficient heat switches for thermal linkage to the load and the heat sink. Cooling power densities of a few W/cm2 and temperature spans in the order of 20 K (in regeneration systems) are achievable at a cycle time of 100 ms

    Energiemanagement-Strategien fΓΌr batterieelektrische Fahrzeuge

    Get PDF
    Das Energiemanagement batterieelektrischer Fahrzeuge ist entscheidend, um das Potential der Batterie bestmΓΆglich auszunutzen. In dieser Arbeit werden daher die Anforderungen an das Energiemanagement herausgearbeitet und mathematisch als Optimierungsproblem beschrieben. Es werden Strategien vorgestellt, wie im Entwicklungsprozess mittels Dynamischer Programmierung und im Fahrbetrieb basierend auf dem Maximumprinzip alle wesentlichen EinflΓΌsse berΓΌcksichtigt werden kΓΆnnen

    Energiemanagement-Strategien fΓΌr batterieelektrische Fahrzeuge

    Get PDF
    Das Energiemanagement batterieelektrischer Fahrzeuge ist entscheidend, um das Potential der Batterie bestmΓΆglich auszunutzen. In dieser Arbeit werden daher die Anforderungen an das Energiemanagement herausgearbeitet und mathematisch als Optimierungsproblem beschrieben. Es werden Strategien vorgestellt, wie im Entwicklungsprozess mittels Dynamischer Programmierung und im Fahrbetrieb basierend auf dem Maximumprinzip alle wesentlichen EinflΓΌsse berΓΌcksichtigt werden kΓΆnnen

    ΠžΡ†Π΅Π½ΠΊΠ° стСпСни кристаллографичСского упорядочСния ΠΌΠ°Π³Π½ΠΈΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΈΠΎΠ½ΠΎΠ² Π² Sr2FeMoO6-Ξ΄ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ интСнсивности рСнтгСновского ΠΏΠΈΠΊΠ° (101)

    Get PDF
    Strontium ferromolybdate (Sr2FeMoO6-Ξ΄, SFMO) having a double Perovskite structure shows good promise as a basic material for spintronics. However SFMO has not yet found wide application due to the low reproducibility of its magnetic properties which partially originates from their strong dependence on the ordering degree of Fe and Mo ions in the BΒ΄ and BΒ² sublattices of double perovskite A2BΒ΄BΒ²O6. We have considered a rapid method of determining strontium ferromolybdate disorder degree. Sublattice population with Fe and Mo ions has been estimated for stoichiometric and nonstoichiometric Sr2FeMoO6-Ξ΄ with a 5% Fe and Mo excess, respectively. We have calculated the intensity ratio between the superstructural ordering (101) peak and the most intense (112 + 200) peak. The calculated curves have been fitted to the analytical expression for similar cases known from literature. The calculation results obtained using this method are in agreement with the results of experimental data processing using the Rietveld method accurate to within Β±25 %. Thus this method can be used instead of the Rietveld method if the exposure time set in an X-ray diffraction experiment is insufficient. We have discussed the dependence of the I(101)/I(112 + 200) peak intensity ratio on various factors including diffraction peak instrumental broadening, peak twinning due to grain size reduction, thin film lattice parameter variation due to substrate lattice mismatch and lattice parameter variation due to oxygen vacancies. The method is useful as it allows evaluating the superlattice ordering degree in Sr2FeMoO6-d without large time consumption for X-ray diffraction pattern recording and processing with the Rietveld method which may be essential when dealing with large amounts of experimental dataΠ€Π΅Ρ€Ρ€ΠΎΠΌΠΎΠ»ΠΈΠ±Π΄Π°Ρ‚ стронция (Sr2FeMoO6-d, SFMO), ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠΉ структурой Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ пСровскита, являСтся ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±Π΅Ρ‰Π°ΡŽΡ‰ΠΈΠΌ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚ΠΎΠΌ для использования Π² качСствС основного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π² спинтроникС. Однако Π½Π° Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ SFMO Π½Π΅ нашСл ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ примСнСния ΠΈΠ·-Π·Π° Π½ΠΈΠ·ΠΊΠΎΠΉ воспроизводимости Π΅Π³ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… свойств, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠΉ, Π² Ρ‚ΠΎΠΌ числС, ΠΈΡ… сильной Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒΡŽ ΠΎΡ‚ стСпСни упорядочСния ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΎΠ² Fe ΠΈ Mo Π² ΠΏΠΎΠ΄Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠ°Ρ… BΒ΄ ΠΈ BΒ² Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ пСровскита A2BΒ΄BΒ²O6. РассмотрСн экспрСсс-ΠΌΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния стСпСни разупорядочСния Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠΎΠ»ΠΈΠ±Π΄Π°Ρ‚Π° стронция. Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ засСлСния ΠΏΠΎΠ΄Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΠΊ ΠΊΠ°Ρ‚ΠΈΠΎΠ½Π°ΠΌΠΈ Fe ΠΈ Mo ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΠΊΠ°ΠΊ для стСхиомСтричСского, Ρ‚Π°ΠΊ ΠΈ для нСстСхиомСтричСского Sr2FeMoO6-Ξ΄ с 5%-Π½Ρ‹ΠΌ ΠΈΠ·Π±Ρ‹Ρ‚ΠΊΠΎΠΌ Fe ΠΈ Mo соотвСтствСнно. Рассчитано ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ интСнсивности ΠΏΠΈΠΊa свСрхструктурного упорядочСния (101) ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ интСнсивному ΠΏΠΈΠΊΡƒ (112 + 200). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΏΠΎΠ΄Π³ΠΎΠ½ΠΊΠ° расчСтных ΠΊΡ€ΠΈΠ²Ρ‹Ρ… ΠΏΠΎΠ΄ извСстноС для Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Ρ… случаСв аналитичСскоС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ расчСтов ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΌ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π ΠΈΡ‚Π²Π΅Π»ΡŒΠ΄Π° Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… Β±25 %, Ρ‡Ρ‚ΠΎ позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ этот ΠΌΠ΅Ρ‚ΠΎΠ΄ Π² качСствС Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π ΠΈΡ‚Π²Π΅Π»ΡŒΠ΄Π° Π² Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° врСмя Π²Ρ‹Π΄Π΅Ρ€ΠΆΠΊΠΈ для рСнтгСноструктурного Π°Π½Π°Π»ΠΈΠ·Π° установлСно нСдостаточно большим. ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΎ влияниС Ρ‚Π°ΠΊΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΊΠ°ΠΊ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π½ΠΎΠ΅ ΡƒΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΈΠΊΠΎΠ², ΡƒΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ ΠΏΠΈΠΊΠΎΠ² вслСдствиС ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° кристаллитов, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΈ Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Π΅Π½ΠΎΠΊ Π·Π° счСт ΠΈΡ… нСсоотвСтствия с ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΎΠΉ ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΈ Π·Π° счСт появлСния кислородных вакансий Π½Π° ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ интСнсивности ΠΏΠΈΠΊΠΎΠ² I(101)/I(112 + 200). ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ позволяСт ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ свСрхструктурного упорядочСния Sr2FeMoO6-d Π½Π΅ трСбуя Π±ΠΎΠ»ΡŒΡˆΠΈΡ… Π·Π°Ρ‚Ρ€Π°Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ съСмки ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°ΠΌΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π ΠΈΡ‚Π²Π΅Π»ΡŒΠ΄Π°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ Π² случаС, ΠΊΠΎΠ³Π΄Π° прСдстоит ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ большоС количСство Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ

    ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ²Π΅Π΄Ρ‡Π΅ΡΠΊΠΈΠ΅ вопросы тСрмодинамичСского модСлирования Ρ‚ΠΎΠ½ΠΊΠΎΠΏΠ»Π΅Π½ΠΎΡ‡Π½Ρ‹Ρ… Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСктрокалоричСских ΠΎΡ…Π»Π°Π΄ΠΈΡ‚Π΅Π»Π΅ΠΉ

    Get PDF
    Materials properties affecting EC device operation are discussed based on an analytically tractable model of a layered EC refrigerator. Special attention was paid to thermal and interface thermal resistances. Estimates of the average cooling power of a stacked MEMS-based EC refrigerator were made.ЭлСктрокалоричСскоС ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ являСтся экологичСски бСзопасной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ прСобразования энСргии. ЭлСктричСскоС ΠΏΠΎΠ»Π΅, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ для возбуТдСния Ρ†ΠΈΠΊΠ»Π° элСктрокалоричСского охлаТдСния, ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ создано Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΡ‰Π΅ ΠΈ с Π³ΠΎΡ€Π°Π·Π΄ΠΎ мСньшими Π·Π°Ρ‚Ρ€Π°Ρ‚Π°ΠΌΠΈ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌΠΈ полями, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ для магнСтокалоричСского охлаТдСния. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, элСктричСская ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ, нСобходимая для элСктрокалоричСского охлаТдСния, ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒΡΡ стационарными ΠΈΠ»ΠΈ ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ солнСчными батарСями, Π° Ρ‚Π°ΠΊΠΆΠ΅ аккумуляторами элСктромобиля. Π­Ρ‚ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ Π½ΠΎΠ²Ρ‹Π΅ возмоТности для экологичСски бСзопасного ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠ³ΠΎ прогрСсса Π² Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ…ΡΡ странах. На основС аналитичСски Ρ€Π΅ΡˆΠ°Π΅ΠΌΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ многослойного элСктрокалоричСского охладитСля обсуТдСны свойства ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², Π²Π»ΠΈΡΡŽΡ‰ΠΈΠ΅ Π½Π° эксплуатационныС характСристики элСктрокалоричСских ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ². ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ ΠΎΠ±ΡŠΠ΅ΠΌΠ½ΠΎΠΌΡƒ тСрмичСскому ΡΠΎΠΏΡ€ΠΎΡ‚ΠΈΠ²Π»Π΅Π½ΠΈΡŽ ΠΈ тСрмичСскому ΡΠΎΠΏΡ€ΠΎΡ‚ΠΈΠ²Π»Π΅Π½ΠΈΡŽ интСрфСйсов. Π”Π°Π½Ρ‹ ΠΎΡ†Π΅Π½ΠΊΠΈ срСднСй ΠΎΡ…Π»Π°ΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉ мощности стСка микроэлСктромСханичСского элСктрокалоричСского охладитСля

    Magnetic-field-enhanced incommensurate magnetic order in the underdoped high-temperature superconductor YBa(2)Cu(3)O(6.45)

    Get PDF
    We present a neutron-scattering study of the static and dynamic spin correlations in the underdoped high-temperature superconductor YBa(2)Cu(3)O(6.45) in magnetic fields up to 15 T. The field strongly enhances static incommensurate magnetic order at low temperatures and induces a spectral-weight shift in the magnetic-excitation spectrum. A reconstruction of the Fermi surface driven by the field-enhanced magnetic superstructure may thus be responsible for the unusual Fermi surface topology revealed by recent quantum-oscillation experiments.Comment: 4 pages, 3 figures. Version 2 as accepted by PRL, contains updated reference list and improved comparison to similar effects in the La-214 syste

    Stripes and Superconductivity in Cuprates

    Full text link
    Holes doped into the CuO2 planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pairing. Ironically, magnetic-field-induced stripe order appears to enhance the stability of superconducting order within the planes.Comment: 6 pages, submitted to proceedings of ECRYS-201

    Effects of impurities and vortices on the low-energy spin excitations in high-Tc materials

    Full text link
    We review a theoretical scenario for the origin of the spin-glass phase of underdoped cuprate materials. In particular it is shown how disorder in a correlated d-wave superconductor generates a magnetic phase by inducing local droplets of antiferromagnetic order which eventually merge and form a quasi-long range ordered state. When correlations are sufficiently strong, disorder is unimportant for the generation of static magnetism but plays an additional role of pinning disordered stripe configurations. We calculate the spin excitations in a disordered spin-density wave phase, and show how disorder and/or applied magnetic fields lead to a slowing down of the dynamical spin fluctuations in agreement with neutron scattering and muon spin rotation (muSR) experiments.Comment: 4 pages, 3 figures, submitted for SNS2010 conference proceeding

    Giant phonon anomalies and central peak due to charge density wave formation in YBa2_2Cu3_3O6.6_{6.6}

    Full text link
    The electron-phonon interaction is a major factor influencing the competition between collective instabilities in correlated-electron materials, but its role in driving high-temperature superconductivity in the cuprates remains poorly understood. We have used high-resolution inelastic x-ray scattering to monitor low-energy phonons in YBa2_2Cu3_3O6.6_{6.6} (superconducting Tc=61\bf T_c = 61 K), which is close to a charge density wave (CDW) instability. Phonons in a narrow range of momentum space around the CDW ordering vector exhibit extremely large superconductivity-induced lineshape renormalizations. These results imply that the electron-phonon interaction has sufficient strength to generate various anomalies in electronic spectra, but does not contribute significantly to Cooper pairing. In addition, a quasi-elastic "central peak" due to CDW nanodomains is observed in a wide temperature range above and below Tc\bf T_c, suggesting that the gradual onset of a spatially inhomogeneous CDW domain state with decreasing temperature is a generic feature of the underdoped cuprates
    • …
    corecore