26 research outputs found

    Impact of ethanol containing gasoline blends on emissions from a flex-fuel vehicle tested over the Worldwide Harmonized Light duty Test Cycle (WLTC)

    Get PDF
    AbstractRegulated and unregulated emissions from a Euro 5a flex-fuel vehicle tested with nine different hydrous and anhydrous ethanol containing fuel blends at 23 and −7°C over the World harmonized Light-duty vehicle Test Cycle and the New European Driving Cycle, were investigated at the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. The experimental results showed no differences on the regulated and unregulated emissions when hydrous ethanol blends were used instead of anhydrous ethanol blends. The use of E85 and E75 blends (gasoline containing 85% and 75% of ethanol, respectively) resulted in a reduction of NOx emissions (30–55%) but increased the emissions of carbon monoxide, methane, carbonyls and ethanol compared to E5, E10 and E15 blends (gasoline containing 5%, 10% and 15% of ethanol, respectively). The increase of the acetaldehyde and ethanol emissions (up to 120% and 350% at 23°C and up to 400% and 390% at −7°C, for acetaldehyde and ethanol, respectively) caused a severe increment of the ozone formation potential. Most of the studied pollutants presented similar emission factors during the tests performed with E10 and E15 blends. The emission factors of most unregulated compounds were lower over the NEDC (with ammonia as an exception) than over the WLTC. However, when taking into consideration only the cold start emissions, emission factors over the WLTC were observed to be higher, or similar, to those obtained over the NEDC. Low ambient temperature caused an increase of the emissions of all studied compounds with all tested blends

    Two-stroke scooters are a dominant source of air pollution in many cities.

    Get PDF
    Fossil fuel-powered vehicles emit significant particulate matter, for example, black carbon and primary organic aerosol, and produce secondary organic aerosol. Here we quantify secondary organic aerosol production from two-stroke scooters. Cars and trucks, particularly diesel vehicles, are thought to be the main vehicular pollution sources. This needs re-thinking, as we show that elevated particulate matter levels can be a consequence of 'asymmetric pollution' from two-stroke scooters, vehicles that constitute a small fraction of the fleet, but can dominate urban vehicular pollution through organic aerosol and aromatic emission factors up to thousands of times higher than from other vehicle classes. Further, we demonstrate that oxidation processes producing secondary organic aerosol from vehicle exhaust also form potentially toxic 'reactive oxygen species'.This work was supported by the Swiss Federal Office for the Environment (FOEN), the Federal Roads Office (FEDRO), the Swiss National Science Foundation (Ambizione PZ00P2_131673, SAPMAV 200021_13016), the EU commission (FP7, COFUND: PSI-Fellow, grant agreement n.° 290605), the UK Natural Environment Research Council (NERC), the French Environment and Energy Management Agency (ADEME, Grant number 1162C00O2) and the Velux Foundation.This is the accepted manuscript version. The final version is available from http://www.nature.com/ncomms/2014/140513/ncomms4749/full/ncomms4749.html

    Local and regional components of aerosol in a heavily trafficked street canyon in central London derived from PMF and cluster analysis of single-particle ATOFMS spectra.

    Get PDF
    Positive matrix factorization (PMF) has been applied to single particle ATOFMS spectra collected on a six lane heavily trafficked road in central London (Marylebone Road), which well represents an urban street canyon. PMF analysis successfully extracted 11 factors from mass spectra of about 700,000 particles as a complement to information on particle types (from K-means cluster analysis). The factors were associated with specific sources and represent the contribution of different traffic related components (i.e., lubricating oils, fresh elemental carbon, organonitrogen and aromatic compounds), secondary aerosol locally produced (i.e., nitrate, oxidized organic aerosol and oxidized organonitrogen compounds), urban background together with regional transport (aged elemental carbon and ammonium) and fresh sea spray. An important result from this study is the evidence that rapid chemical processes occur in the street canyon with production of secondary particles from road traffic emissions. These locally generated particles, together with aging processes, dramatically affected aerosol composition producing internally mixed particles. These processes may become important with stagnant air conditions and in countries where gasoline vehicles are predominant and need to be considered when quantifying the impact of traffic emissions.This is the author accepted manuscript. The final version is available via ACS at http://pubs.acs.org/doi/abs/10.1021/es506249z

    Particle number measurements in the European legislation and future JRC activities

    No full text
    The solid particle number method was introduced in the European Union (EU) light-duty legislation for diesel vehicles to ensure the installation of the best-available technology for particles (i.e., wall-flow diesel particulate filters) without the uncertainties of the volatile nucleation mode and without the need of large investment for purchasing the equipment. Later it was extended to gasoline vehicles with direct injection engines, heavy-duty engines (both compression ignition and positive ignitions) and non-road mobile machinery engines. Real Driving Emissions (RDE) testing on the road with Portable Emissions Measurement Systems (PEMS) for particle number (and NOx) during type approval and in-service conformity testing was recently (in 2017) introduced for light-duty vehicles, and is under discussion for heavy-duty vehicles in-service conformity testing. This paper will summarize the existing legislation regarding solid particle number and discuss the on-going activities at EU level. The main focus at the moment is on improving the calibration procedures, and extending the lower detection size below 23 nm with interlaboratory exercises. In parallel, discussions are on-going to introduce testing at low ambient temperature, regeneration emissions in the light-duty regulation, a particle limit for other technologies such as gasoline port-fuel injection vehicles, and the feasibility of particle measurements to L-category vehicles (mopeds, motorcycles, tricycles and minicars). A short overview of periodical technical inspection investigations and the situation regarding non-exhaust traffic related sources with special focus on brakes and tyres will be described

    Atmospheric Fate of a Series of Carbonyl Nitrates: Photolysis Frequencies and OH-Oxidation Rate Constants

    No full text
    Multifunctional organic nitrates are potential NO<sub><i>x</i></sub> reservoirs whose atmospheric chemistry is somewhat little known. They could play an important role in the spatial distribution of reactive nitrogen species and consequently in ozone formation and distribution in remote areas. In this work, the rate constants for the reaction with OH radical and the photolysis frequencies of α-nitrooxyacetone, 3-nitrooxy-2-butanone, and 3-methyl-3-nitrooxy-2-butanone have been determined at room temperature at 1000 mbar total pressure of synthetic air. The rate constants for the OH oxidation were measured using the relative rate technique, with methanol as reference compound. The following rate constants were obtained for the reaction with OH: <i>k</i><sub>OH</sub> = (6.7 ± 2.5) × 10<sup>–13</sup> cm<sup>3</sup> molecule<sup>–1</sup> s<sup>–1</sup> for α-nitrooxyacetone, (10.6 ± 4.1) × 10<sup>–13</sup> cm<sup>3</sup> molecule<sup>–1</sup> s<sup>–1</sup> for 3-nitrooxy-2-butanone, and (2.6 ± 0.9) × 10<sup>–13</sup> cm<sup>3</sup> molecule<sup>–1</sup> s<sup>–1</sup> for 3-methyl-3-nitrooxy-2-butanone. The corresponding photolysis frequencies extrapolated to typical atmospheric conditions for July first at noon at 40° latitude North were (4.8 ± 0.3) × 10<sup>–5</sup> s<sup>–1</sup>, (5.7 ± 0.3) × 10<sup>–5</sup> s<sup>–1</sup>, and (7.4 ± 0.2) × 10<sup>–5</sup> s<sup>–1</sup>, respectively. The data show that photolysis is a major atmospheric sink for these organic nitrates
    corecore