59 research outputs found

    Fighting Pandemics with Augmented Reality and Smart Sensing-based Social Distancing

    Get PDF
    In a postpandemic world, remaining vigilant and maintaining social distancing are still crucial so societies can contain the virus and the public can avoid disproportionate health impacts. Augmented reality (AR) can visually assist users in understanding the distances in social distancing. However, integrating external sensing and analysis is required for social distancing beyond the users’ local environment. We present DistAR, an android-based application for social distancing leveraging AR and smart sensing using on-device analysis of optical images and environment crowdedness from smart campus data. Our prototype is one of the first efforts to combine AR and smart sensing technologies to create a real-time social distancing application.Peer reviewe

    Mobile Augmented Reality: User Interfaces, Frameworks, and Intelligence

    Get PDF
    Mobile Augmented Reality (MAR) integrates computer-generated virtual objects with physical environments for mobile devices. MAR systems enable users to interact with MAR devices, such as smartphones and head-worn wearables, and perform seamless transitions from the physical world to a mixed world with digital entities. These MAR systems support user experiences using MAR devices to provide universal access to digital content. Over the past 20 years, several MAR systems have been developed, however, the studies and design of MAR frameworks have not yet been systematically reviewed from the perspective of user-centric design. This article presents the first effort of surveying existing MAR frameworks (count: 37) and further discuss the latest studies on MAR through a top-down approach: (1) MAR applications; (2) MAR visualisation techniques adaptive to user mobility and contexts; (3) systematic evaluation of MAR frameworks, including supported platforms and corresponding features such as tracking, feature extraction, and sensing capabilities; and (4) underlying machine learning approaches supporting intelligent operations within MAR systems. Finally, we summarise the development of emerging research fields and the current state-of-the-art, and discuss the important open challenges and possible theoretical and technical directions. This survey aims to benefit both researchers and MAR system developers alike.Peer reviewe

    Intelligent and Scalable Air Quality Monitoring with 5G Edge

    Get PDF
    Air pollution introduces a major challenge for societies, where it leads to the premature deaths of millions of people each year globally. Massive deployment of air quality sensing devices and data analysis for the resultant data will pave the way for the development of real-time intelligent applications and services, e.g., minimization of exposure to poor air quality either on an individual or city scale. 5G and edge computing supports dense deployments of sensors at high resolution with ubiquitous connectivity, high bandwidth, high-speed gigabit connections, and ultralow latency analysis. This article conceptualizes AI-powered scalable air quality monitoring and presents two systems of calibrating low-cost air quality sensors and the image processing of pictures captured by hyperspectral cameras to better detect air quality. We develop and deploy different AI algorithms in these two systems on a 5G edge testbed and perform a detailed analytics regarding to 1) the performance of AI algorithms and 2) the required communication and computation resources.Peer reviewe

    Edge Computing: The Computing Infrastructure for the Smart Mega-cities of the Future

    Get PDF
    Future mega-cities are expected to be smart and integrate sensing, wireless communications, and artificial intelligence to offer innovative services to their citizens. This development has the potential to generate massive amounts of data which need to be processed in a cost-effective, scalable, and continuous manner. Fulfilling this requirement requires solutions that can offer the necessary computational infrastructure while meeting the constraints of cities (e.g., budget and energy). This paper contributes a research vision for using edge computing to deliver the computing infrastructure for emerging smart mega-cities. We present use cases, identify key requirements, and reflect on the current state-of-the-art. We also address edge server placements, which is a key challenge for the adoption of edge computing, demonstrating how it is needed to determine a scalable and effective deployment of edge nodes for satisfying the processing needs of smart mega-cities.Peer reviewe

    What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission

    Get PDF
    In this contribution, we conceptually present a new avenue to construction of molecular functional materials with high performance of circularly polarised luminescence (CPL) in the condensed phase. A molecule (1) containing luminogenic silole and chiral sugar moieties was synthesized and thoroughly characterized. In a solution of 1, no circular dichroism (CD) and fluorescence emission are observed, but upon molecular aggregation, both the CD and fluorescence are simultaneously turned on, showing aggregation-induced CD (AICD) and emission (AIE) effects. The AICD effect is supported by the fact that the molecules readily assemble into right-handed helical nanoribbons and superhelical ropes when aggregated. The AIE effect boosts the fluorescence quantum efficiency (ΦF) by 136 fold (ΦF, ∼0.6% in the solution versus ∼81.3% in the solid state), which surmounts the serious limitations of aggregation-caused quenching effect encountered by conventional luminescent materials. Time-resolved fluorescence study and theoretical calculation from first principles conclude that restriction of the low-frequency intramolecular motions is responsible for the AIE effect. The helical assemblies of 1 prefer to emit right-handed circularly polarised light and display large CPL dissymmetry factors (gem), whose absolute values are in the range of 0.08–0.32 and are two orders of magnitude higher than those of commonly reported organic materials. We demonstrate for the first time the use of a Teflon-based microfluidic technique for fabrication of the fluorescent pattern. This shows the highest gem of −0.32 possibly due to the enhanced assembling order in the confined microchannel environment. The CPL performance was preserved after more than half year storage under ambient conditions, revealing the excellent spectral stability. Computational simulation was performed to interpret how the molecules in the aggregates interact with each other at the molecular level. Our designed molecule represents the desired molecular functional material for generating efficient CPL in the solid state, and the current study shows the best results among the reported organic conjugated molecular systems in terms of emission efficiency, dissymmetry factor, and spectral stability

    Pan-genome and resistome analysis of extended-spectrum ß-lactamase-producing Escherichia coli: A multi-setting epidemiological surveillance study from Malaysia

    Get PDF
    Daniel Reidpath - ORCID: 0000-0002-8796-0420 https://orcid.org/0000-0002-8796-0420Objectives This study profiled the prevalence of extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-EC) in the community and compared their resistome and genomic profiles with isolates from clinical patients through whole-genome sequencing. Methods Fecal samples from 233 community dwellers from Segamat, a town in southern Malaysia, were obtained between May through August 2018. Putative ESBL strains were screened and tested using antibiotic susceptibility tests. Additionally, eight clinical ESBL-EC were obtained from a hospital in the same district between June through October 2020. Whole-genome sequencing was then conducted on selected ESBL-EC from both settings (n = 40) for pan-genome comparison, cluster analysis, and resistome profiling. Results A mean ESBL-EC carriage rate of 17.82% (95% CI: 10.48%– 24.11%) was observed in the community and was consistent across demographic factors. Whole-genome sequences of the ESBL-EC (n = 40) enabled the detection of multiple plasmid replicon groups (n = 28), resistance genes (n = 34) and virulence factors (n = 335), with no significant difference in the number of genes carried between the community and clinical isolates (plasmid replicon groups, p = 0.13; resistance genes, p = 0.47; virulence factors, p = 0.94). Virulence gene marker analysis detected the presence of extraintestinal pathogenic E. coli (ExPEC), uropathogenic E. coli (UPEC), and enteroaggregative E. coli (EAEC) in both the community and clinical isolates. Multiple blaCTX-M variants were observed, dominated by blaCTX-M-27 (n = 12), blaCTX-M-65 (n = 10), and blaCTX-M-15 (n = 9). The clinical and community isolates did not cluster together based on the pan-genome comparison, suggesting isolates from the two settings were clonally unrelated. However, cluster analysis based on carried plasmids, resistance genes and phenotypic susceptibility profiles identified four distinct clusters, with similar patterns between the community and clinical isolates. Conclusion ESBL-EC from the clinical and community settings shared similar resistome profiles, suggesting the frequent exchange of genetic materials through horizontal gene transfer.This study was funded by the 2017 Monash Malaysia Strategic Large Grant Scheme (LG-2017-01-SCI) to LSM and the grant FRGS/1/2019/SKK01/MUSM/01/1 to SR from the Ministry of Higher Education, Malaysia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.https://doi.org/10.1371/journal.pone.026514217pubpub

    Effect of fertility health awareness strategies on fertility knowledge and childbearing in young married couples (FertStart): study protocol for an effectiveness-implementation hybrid type I multicentre three-arm parallel group open-label randomised clinical trial

    Get PDF
    Introduction Birth rates have been declining in many advanced societies including Singapore. We designed two interventions with vastly different resource requirements, which include fertility education, personalised fertility information and a behavioural change component targeting modifiable psychological constructs to modify fertility awareness and childbearing intentions. We aim to evaluate the effect of these two interventions on knowledge, attitudes and practice around childbearing compared with a control group among young married couples in Singapore and understand the implementation factors in the setting of an effectiveness-implementation hybrid type 1 three-arm randomised trial. Methods and analysis We will randomise 1200 young married couples to no intervention (control), Fertility Health Screening group (FHS) or Fertility Awareness Tools (FAT) in a 7:5:5 ratio. Couples in FHS will undergo an anti-Mullerian hormone test and semen analysis, a doctor’s consultation to explain the results and standardised reproductive counselling by a trained nurse. Couples in FAT will watch a standardised video, complete an adapted fertility status awareness (FertiSTAT) tool and receive an educational brochure. The attitudes, fertility knowledge and efforts to achieve pregnancy of all couples will be assessed at baseline and 6 months post-randomisation. Birth statistics will be tracked using administrative records at 2 and 3 years. The primary outcome is the change in the woman’s self-reported intended age at first birth between baseline and 6 months post-randomisation. In addition, implementation outcomes and cost-effectiveness of the two interventions will be assessed

    Phenotypic screen for oxygen consumption rate identifies an anti-cancer naphthoquinone that induces mitochondrial oxidative stress.

    Get PDF
    A hallmark of cancer cells is their ability to reprogram nutrient metabolism. Thus, disruption to this phenotype is a potential avenue for anti-cancer therapy. Herein we used a phenotypic chemical library screening approach to identify molecules that disrupted nutrient metabolism (by increasing cellular oxygen consumption rate) and were toxic to cancer cells. From this screen we discovered a 1,4-Naphthoquinone (referred to as BH10) that is toxic to a broad range of cancer cell types. BH10 has improved cancer-selective toxicity compared to doxorubicin, 17-AAG, vitamin K3, and other known anti-cancer quinones. BH10 increases glucose oxidation via both mitochondrial and pentose phosphate pathways, decreases glycolysis, lowers GSH:GSSG and NAPDH/NAPD+ ratios exclusively in cancer cells, and induces necrosis. BH10 targets mitochondrial redox defence as evidenced by increased mitochondrial peroxiredoxin 3 oxidation and decreased mitochondrial aconitase activity, without changes in markers of cytosolic or nuclear damage. Over-expression of mitochondria-targeted catalase protects cells from BH10-mediated toxicity, while the thioredoxin reductase inhibitor auranofin synergistically enhances BH10-induced peroxiredoxin 3 oxidation and cytotoxicity. Overall, BH10 represents a 1,4-Naphthoquinone with an improved cancer-selective cytotoxicity profile via its mitochondrial specificity
    • …
    corecore