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Abstract—Air pollution introduces a major challenge for soci-
eties, where it leads to the premature deaths of millions of people
each year globally. Massive deployment of air quality sensing
devices and data analysis for the resultant data will pave the
way for the development of real-time intelligent applications and
services, e.g., minimization of exposure to poor air quality either
on an individual or city scale. 5G and edge computing supports
dense deployments of sensors at high resolution with ubiquitous
connectivity, high bandwidth, high-speed gigabit connections, and
ultra-low latency analysis. This paper conceptualizes AI-powered
scalable air quality monitoring and presents two systems of
calibrating low-cost air quality sensors and the image processing
of pictures captured by hyperspectral cameras to better detect
air quality. We develop and deploy different AI algorithms in
these two systems on a 5G edge testbed and perform a detailed
analytics regarding to 1) the performance of AI algorithms and
2) the required communication and computation resources.

Index Terms—5G, edge computing, air quality monitoring,
sensor calibration, hyperspectral images processing.

I. INTRODUCTION

In recent years, we have witnessed an unprecedented growth
of urban areas, which are characterized by highly dense and
mobile sensing devices, localized data processing, and versa-
tile actuators. It has paved the way for novel, personalized,
real-time, clean, and safe digital city services for citizens. To
enable this, future smart cities provide intelligent and green
living environments at lower costs, and are supported by Ar-
tificial Intelligence (AI) and 5G. Numerous intelligent nodes,
such as base stations, road side units, and even smart street
lights provide near real-time decision making and optimization
[1].

Air quality degradation in urban areas has become a global
challenge for human health, ecosystems, and the climate.
The recent study by the Global Burden of Disease project
has reported that 5.5 million people worldwide are dying
prematurely each year as a result of low-quality air. [2]. Air
pollutants are conventionally measured by expensive high-
end stationary stations. However, high costs and the need for
frequent station maintenance prevents dense and large-scale
deployments. Recent advances in sensing technologies and
wireless communications enable a complementary approach of
large scale sensing solutions with low-cost sensing devices [3].

We address the significant problem of real-time air quality
sensing with high spatial resolutions by leveraging 5G edge
computing, AI methods, and dense deployment of low-cost
sensors and hyperspectral cameras. For massive deployment
of low-cost sensors, we focus on calibrating a large number
of them with a small number of highly accurate reference
stations by using AI techniques for improved air quality
measurements. For the hyperspectral cameras, we infer the air
quality indicators based on captured spectral images through
a Convolutional Neural Network (CNN).

5G edge computing offers unification through supporting
versatile connections and a framework for managing smart city
deployment. 5G with low latency and high bandwidth carries
the data needed by AI algorithms for real-time analysis. Edge
servers, typically co-located with 5G base stations, allow for
AI algorithms to be deployed in proximity to sensing devices
and end users. By allowing resource-constrained devices (low-
cost sensors and hyperspectral cameras) to offload data and
computation-intensive tasks to edge servers, we enable low-
latency air quality analysis, preserve computation capacities;
conserve device battery life; and support scalable, secure, and
privacy-preserving services.

We propose AI-powered scalable real-time air pollution
monitoring by developing a sensing architecture with different
air quality sensing devices, from resource-constrained immo-
bile and mobile sensing devices to cameras (as depicted in
Figure 1). We demonstrate the feasibility in deploying AI
algorithms, i.e., calibration and image processing, on a real-
world 5G Test Network (5GTN) [4] and conduct a compre-
hensive scalability analytics of system latency, throughput and
computation resources on edge servers.

II. SCALABLE AIR QUALITY MONITORING WITH 5G EDGE

A. Challenges

High resolution spatio-temporal air quality monitoring re-
quires dense and massive-scale low-cost sensor and hyperspec-
tral camera deployment in urban areas. This introduces sig-
nificant challenges, including 1) ubiquitous connectivity and
high-speed connections; 2) the processing of big data volumes;
and 3) real-time analysis for latency sensitive applications. In



Fig. 1: A conceptual 5G edge architecture for massively deploying air quality sensors and spectral cameras in different locations
within urban environments. Ubiquitous fixed and mobile air quality devices generate large volumes of data requiring reliable
and high-speed data connections to edge computers (co-located with 5G small cells) at their proximity for fast data analysis.
Measured data can be sent to the cloud centers for further long-term analysis and storage.

the scenario of a single city block, there would be thousands
of air quality sensors deployed while each producing kilobytes
of air quality data per measurement, as well as hundreds of
hyperspectral cameras with each generating images of 30-300
megabytes in about a minute. Both types of devices deliver
large volumes of air quality data at high speed, which requires
real-time AI analysis. The following are crucial challenges:

1) Ubiquitous connectivity Heterogeneous and multi-
platform sensing devices are distributed in urban environ-
ments and underpin air quality sensing infrastructure and
services. Novel communication technologies are required
to provide connectivity to everything at everywhere and
every time. This allows devices to create, share, and
process data in the air quality sensing infrastructure.

2) High-speed gigabit connections Diverse systems expect
high-speed connections to carry data needed by AI algo-
rithms to perform real-time analysis, reasoning, and op-
timizations. For example, high-speed connections enable
faster air quality detection with hyperspectral images.

3) Big data streams processing capacities The amount
of data streams collected from air quality devices is
enormous and data is continuously generated at high
frequencies. Potential subsequent integration of multiple
sources further amplifies this challenge. Processing big
air quality data streams extracts higher level information,
guides the understanding of complex environmental situ-
ations, and enables real-time analysis to provide insights
for users.

4) Low-latency analysis For latency sensitive services, the
ultimate goal is to generate timely insights of environ-

mental situations before becoming obsolete. For example,
city navigation would benefit considerably from real-time
air quality sensing, as this could inform users whether
particular routes are suitable for their own personal
safety levels and they can avoid unnecessary exposure
to harmful particulates (e.g., air pollution, aerosols that
may transport infectious viruses). Air quality monitoring
demands high processing throughput, which introduces a
conflict of latency requirement.

B. 5G edge based air quality sensing

As shown in Figure 1, we propose the 5G edge to address
these challenges. Massive scale sensor deployment generates
big data streams, which requires bandwidths of up to tens
or hundreds of gigabytes per second per city block from the
communication network. Current 4G networks only support
limited number of connections, and Narrow-Band IoT (NB-
IoT) cannot provide sufficient bandwidth to support trans-
mission of large data volumes. 5G networks allow for both
massive numbers of connections and provide support for the
transmission of large amounts of data.

5G networks are mobile networks supporting densely
deployed massive-scale air quality sensors in urban areas
horizontally and vertically. The dense deployment of 5G base
stations, equipped with antenna arrays, significantly increases
the available line-of-sights between sensing devices and 5G
antennas. This allows for the estimation of the precise 3D
locations of sensors and therefore offers accurate air quality
information.



(a) (b)

(c) (d)

Fig. 2: (a) RMSE and MAE between true values of reference station and predictions for different calibration models. (b)
Absolute errors distributions of different calibration models and absolute error distribution of measurements from low-cost
sensors. Calibration decreases the errors dramatically by deploying the calibration models. Raw data from low-cost sensors
(uncalibrated) has the lowest percentage for absolute errors within interval [0,2] and has the highest percentage for absolute
errors within interval [2,4], [4,6], and [6,8]. (c) Raw data of PM2.5 from low-cost sensor compared with true PM2.5 values
from reference station. (d) Calibrated PM2.5 of low-cost sensor by EDNet compared with true PM2.5 values from reference
station. It shows that EDNet is able to recover the real PM2.5 values to a certain extent.

5G networks with their massive Machine Type Communi-
cations (mMTC) characteristic fulfill the requirement of ultra-
dense machine communications by supporting connection den-
sities of one million devices per square kilometer and fulfilling
certain quality of service requirements. Thus, mMTC enables
the connection of thousands of air quality sensors and hyper-
spectral cameras simultaneously. The enhanced Mobile Broad-
band (eMBB) 5G feature supports high data rates (exceeding
10 Gbps), which fulfills the throughput requirement, when
thousands of air quality sensors and cameras transmits large
volumes of data simultaneously and may require gigabytes of
network capacity. Finally, 5G offers ultra-reliable and Low-
latency Communications (uRLLC), which fulfills the require-
ments for extremely low latency communication, allowing for
very fast raw data transmission as well as delivering processed
air quality information in real-time to citizens [5].

Edge server offers data storage and analysis at the edge
of networks, which enables reduced network traffic, low and
predictable latency, secure and privacy-preserving services and
applications, and scalability [6]. To support the storage and
processing of large volumes of air quality data collected from
different locations within a city block, edge servers enable
location-based real-time air quality analysis. Here, we focus
on implementing AI algorithms, i.e., sensor data calibrations

and image processing on edge servers which are in proximity
to sensing devices.

III. DATA ANALYSIS FOR AIR QUALITY SENSING ON THE
EDGE

This section presents two AI systems for air quality mon-
itoring, i.e., air quality sensing with calibration methods and
hyperspectral imaging with deep learning methods, both de-
ployable on the 5G edge.

A. Calibration for low-cost air quality sensors

Accurate air quality sensing in cities requires periodic
calibration of massive low-cost sensors in near real-time,
because low-cost sensors suffer from accuracy, instability, and
sensor drifts. Advances in air quality sensing have led to
AI-based calibration methods for enhancing sensor accuracy
[7]. Calibration is traditionally performed by locating low-cost
sensors near reference sensing stations. Massive calibration
of air quality sensors generates significant amounts of data.
This data is sent and received from reference stations and
low-cost sensors to edge computers, which requires fast data
communication and calibration within the network.

We evaluate the calibration performance of air quality
sensors equipped with WiFi, with using a smartphone as a



WiFi hotspot. The sensor unit is capable of sensing and re-
porting timestamped data about particulate mass concentration
(PM), gas pollutants, such as carbon monoxide and ozone,
meteorological parameters, such as temperature and humidity,
and instrument parameters, such as device battery level. PM
with diameters less than 2.5 microns (PM2.5) are measured
using Sensirion SPS30 with a red laser arranged in a 90 degree
scattering angle to observe the sample airflow generated by a
fan [8].

We calibrate the readings of PM2.5 using measurements
from low-cost sensors, as PM2.5 is one of major air pollutants
affecting everyone’s lives. To perform calibration, we collected
an accurate dataset containing PM2.5 for continuous 45 days in
2019 from the air quality reference station in Helsinki called
SMEAR-III [9]. PM2.5 in the reference station is measured
using a TEOM 1405-D sensor. We also collected a dataset
containing the measurements of PM2.5, pressure, temperature,
and relative humidity using low-cost sensors while installed
near the reference station within the same period.

Regression models, including multiple linear regression
(MLR), random forest (RF), and artificial neural network
(ANN), have been widely used in sensor calibration for air
quality monitoring [10]. Such models use current time sensor
measurements as inputs without taking the temporal structure
into consideration. Long short-term memory (LSTM) is de-
signed for incorporating temporal structure and is well suited
for modeling time series. We propose EDNet, an Encoder-
Decoder LSTM architecture for sensor calibration for air qual-
ity monitoring. The architecture includes an LSTM encoder
and an LSTM decoder, which are responsible for extracting
the observation information of input values and obtaining the
features by feeding the input sequences into an LSTM, and
reading the encoded input sequence and making predictions
for each element in the output sequence, respectively. Fully
connected dense layers are used to process the time steps
produced by the decoder to produce the final outputs. The
former 80% of collected data is used for training and the
latter 20% is used for testing. In the training set, the latter
30% of data is used for validation. PM measurements along
with environmental factors collected from low-cost sensors are
used for building the calibration model, and two hours window
of measurements are used as input sequences.

The baselines we consider are an MLR model, a RF
predictor, and an ANN based method denoted by ANN,
which consists of two hidden layers with 64 and 32 neurons,
respectively. Figure 2(a) presents the root mean squared error
(RMSE) and mean absolute error (MAE) of EDNet compared
to baselines. RF suitable for capturing nonlinear relationships
has comparable performance to MLR. ANN has better perfor-
mance compared to RF and MLR from the RMSE perspective.
While EDNet presents the best performance from RMSE and
MAE perspectives, because it takes the temporal information
of measurements from different sensors into consideration.
Calibration decreases the errors dramatically by deploying
calibration models (Figure 2(b)). Figures 2(c) and 2(d) present

the real-time calibration performance of EDNet for four days.

B. Hyperspectral Image Processing

Massive usage of hyperspectral cameras is foreseen to be an
integral part of future sensing solutions for air quality monitor-
ing [11], as hyperspectral cameras collect detailed information
from images for air quality detection. Dark channel prior [12]
is a widely used prior for image dehazing, and from the prior,
a hyperspectral image should obtain a more accurate dark
channel than RGB images as there are many more colors in
a hyperspectral image. Different wavelengths have different
responses to haze, indicating that more information should
be obtained from a hyperspectral image than a related RGB
image [13]. When applying a hyperspectral camera for air
quality sensing, air pollution changes the path of light, causing
captured images under inclement weather to have low contrast
and limited visibility [14]. We utilize a portable handheld
push broom hyperspectral camera, called Specim IQ [15]. The
camera covers a spectral range from 400 to 1000 nm, and the
resolution of a captured hyperspectral image is 512×512×204.
We select 51 channels out from the 204 channels for the
retrieval of atmospheric visibility.

To process hyperspectral images for air pollution detection,
we develop a model, i.e., EnvNet, to evaluate the relationship
between images and atmospheric visibility. EnvNet consists
of several convolutional layers and ResNet blocks [16], one
pooling layer, and one fully connected layer. EnvNet gives a
predicted atmospheric visibility value for each image, which
can be compared with the reference value from the instru-
ment. We collect 1487 hyperspectral images using the Specim
IQ camera at Beijing University of Chemical Technology
(BUCT). Two image samples are shown in Figure 3 represent-
ing different visibility. We use 80% of the data for training and
20% for testing. For the training set, 20% of the data is used
for validation. The reference atmospheric visibility values are
provided by the instrument PWD22, Vaisala of BUCT [17].

For atmospheric visibility, MAE and the coefficient of de-
termination (R2) are used to evaluate model performance. The
MAEs between the predicted values and reference values for
EnvNet, AlexNet [18], and DenseNet [19] are 698.65 meters,
937.46 meters, and 1172.05 meters, respectively (Figure 3(c)).
The R2s between the predicted values and reference values
for EnvNet, AlexNet, and DenseNet are 0.95, 0.94, and 0.92,
respectively. EnvNet outperforms AlexNet and DenseNet by
achieving the highest R2 and the lowest MAE.

IV. EXPERIMENTATION AND ANALYTICS

A. 5G Edge Testbed

Our experiments demonstrate the feasibility and perfor-
mance of deploying the above-mentioned AI systems and al-
gorithms on a real-world 5G edge testbed for massive-scale air
quality monitoring. Our testbed is composed of 5GTN, edge
servers, as well as air quality sensors and hyperspectral cam-
eras. 5GTN is a full scale 5G micro operator and the world’s
first open 5G test network. 5GTN provides non-standalone
5G and LTE connectivity through deploying different 5G
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Fig. 3: (a) and (b) Two images captured on two different days with different atmospheric visibility. The range for visibility
is from 0 to 20 km, where 0 km means that the air is heavily polluted and 20 km refers to a relatively clear day. (c) Mean
absolute errors of EnvNet, AlexNet, and DenseNet.

and LTE base stations and is controlled by operator-grade
evolved packet cores, which provides key functions, such as
mobility management, data packet routing, and authentication.
We conduct our experimentation at the University of Oulu
implementation of 5GTN, which has air interfaces of two 5G
macro cells (n78), several LTE macro cells (B28, B7, B42),
and a LoRa network supporting frequencies [0.7, 2.1, 2.6 and
3.5] GHz. Moreover, testbed supports heterogeneous wireless
technologies, including IEEE 802.11, Bluetooth LE, LoRa,
NB-IoT, UWB and LTE evolutions, such as LTE-M and LTE-
U. Edge servers are deployed on 5GTN to support latency-
sensitive data analysis. The edge server in this experimentation
has an Intel Core i7-8700 CPU, 32 GB memory, and an
NVIDIA GeForce RTX 2080 Ti GPU.

A PC (Intel Core i7-8700K CPU, 32 GB memory, and
an NVIDIA GeForce RTX 2080 with Max-Q Design GPU)
relays the real collected data from low-cost air quality sensors
and hyperspectral cameras. With this approach, we are able
to evaluate massive deployment of devices through multiple
parallel threads (one thread represents one device). Data is sent
from each thread to a OnePlus 7 Pro 5G smartphone through
local 5 GHz 802.11ac WiFi connections. The smartphone then
forwards the data using either 5G or LTE connections to
an edge server, which is connected to 5GTN through a 5G
modem.

B. Results and analytics

To analyze the performance of 5G edge for scalable air
quality monitoring, we study:

• Data transmission latency and throughput. We separate
overall latency into latency of transmitting data from
devices to a smartphone with WiFi, and latency of for-
warding the data from the smartphone to an edge server
with 5G or LTE.

• Scalability. An increasing amount of devices are emulated
to deliver data to an edge server.

• Required computation resources (CPU, GPU, and mem-
ory) of two systems with alternative AI algorithms on
edge servers.

We analyze communication latency, throughput, and re-
quired computation resources on edge servers with an incre-
mental number of devices (by increasing number of threads).
We consider future dense deployment of devices in ubiquitous
5G networks, which may contain one sensor every 10 m
for the same area or 10,000 sensors per km2 [11]. Our
experimentation explores increasing device numbers from 1
to 1000 in increments of 100 for air quality sensors, and
1 to 50 in increments of 10 for the spectral cameras. We
measure the latency and bandwidth of WiFi connections from
devices to 5G smartphone, and the 5G/LTE connections from
the smartphone to the edge server. Each thread transmits data
to the 5G smartphone at an interval of 2s for the air quality
sensor data and a period of 0.05s for the spectral image data.

Figures 4(a), 4(b), 4(f), and 4(g) compare the latency and
throughput of 5G and LTE for data transfer from the 5G
smartphone to the edge server, when the number of sensors
and cameras are increased. We observe that, 5G provides
significantly reduced latency over LTE. The throughputs are
comparable for 5G and LTE connections in the scalability
test, with the spectral data achieving a slightly larger differ-
ence than the sensor data. Transferring spectral camera data
achieves a higher throughput with a much lower number of
devices as the amount of transferred data is larger than that of
the sensor.

We analyze proposed algorithms (EDNet and EnvNet) on
the edge server and compare their performance against other
alternative algorithms. Figures 4(c) and 4(h) present the break-
down latency required to transfer data from the devices to the
5G smartphone with WiFi, from the 5G phone to edge server
with 5G, and the model inference time on the edge server.
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Fig. 4: Left: scalability results for low-cost air quality sensors: (a) Latency comparison of 5G and LTE, 5G provides a 28.0%
latency improvement over LTE; (b) Throughput comparison of 5G and LTE, with a 1.14% percentage difference between both
types of connections; (c) Latency breakdown for low-cost sensor data communication and analysis, communication latency
dominates in end-to-end latency related to RF, MLR and ANN algorithms, and inference time dominates in EDNet; (d)
CPU and GPU clock cycles for the analysis; (e) GPU memory and RAM usage for analysis; Right: scalability results for
hyperspectral specim IQ cameras: (f) Latency comparison of 5G and LTE, 5G provides a 17.6% latency improvement over
LTE; (g) Throughput comparison of 5G and LTE, with a 6.86% percentage difference between both connections; (h) Latency
breakdown for camera images data communication and analysis, inference time dominates for spectral camera image processing
algorithms; (i) CPU and GPU clock cycles for the analysis; (j) GPU memory and RAM usage for analysis. The analytics for
both sensors and cameras include analyses of different AI algorithms, their results are labeled according to the keys below
each plot.



For both air quality sensors and hyperspectral cameras, as
device number increases, the inference time increases linearly.
With the hyperspectral imaging processing, the inference times
are significantly higher than the data transfer. For example,
the inference time of EnvNet is on average 221 times larger
than the total data transfer latency, this is also evident in
AlexNet and DenseNet. Comparing the sensor calibration
models inference times, their values do not dominate the data
transfer latency, as with the hyperspectral analysis. For EDNet,
the inference time is on average 2.04 times larger than the total
data transfer latency. And EDNet in particular has a noticeable
increase in inference time as the number of sensors increases,
this is due to the model being more computationally complex
than others.

We further investigate computation resource usage of the
inference on the edge server. Figures 4(d) and 4(i) present
estimations of the CPU and GPU clock cycles. We observe
in both systems, the CPU utilizes more clock cycles for in-
ference. However, the hyperspectral image processing utilizes
more clock cycles than sensor calibration, as the CPU must
transform the data from 204 to 29 channels before on-GPU
analysis is performed. When comparing the memory usage, the
inference with air quality sensors utilizes more GPU memory
than it does RAM (Figure 4(e)), this is reversed with the hy-
perspectral image processing (Figure 4(j)). Inter-comparisons
between the different AI algorithms’ performances in both
clock cycles and memory usage metrics shows that: 1) EDNet
and the ANN both require more resources than the MLR or
RF algorithms. The implementations of both MLR and RF
do not utilize the GPU, therefore display no GPU usage. 2)
EDNet achieves the best accuracy compared to ANN, RF, and
MLR, but requires more resources and inference time on the
edge. Therefore, there is a trade-off to be considered according
to available resources and system level requirements. 3) En-
vNet, AlexNet, and DenseNet require comparable computation
resources when analyzing the hyperspectral images across
increasing camera numbers.

V. CONCLUSION

5G and AI have paved the way for the development of
novel services and applications for massive-scale air quality
monitoring, which reduces individuals’ exposure to poor air
quality. This paper addresses significant challenges pertaining
to real-time air quality sensing and analysis by leveraging
5G edge, AI methods, and massive deployment of devices
in urban environments. Our contributions are threefold: 1)
we develop a scalable air quality monitoring architecture
supported by 5G edge; 2) we deploy two AI systems, i.e.,
low-cost sensor calibration and hyperspectral image processing
with alternative algorithms on 5GTN; and 3) we conduct
a comprehensive scalability analytics of communication and
computation resources on edge servers. Our experimentation
verifies 1) 5G supports scalable deployment of air quality
monitoring with low latency; and 2) different AI algorithms
can be deployed on the 5G edge servers for latency-sensitive
analysis.

In future research, we will explore run-time calibration of
the hierarchical sensors as well as investigate approaches for
processing real-time image and video data from hyperspectral
cameras for air pollutant detection. We will further inves-
tigate how to leverage local knowledge at edge servers to
design more complex algorithms by deploying collaborative
calibration, transfer learning, and federated learning for sensor
calibration and data analysis.
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Tuukka Petäjä: is a full professor at the Institute for
Atmospheric and Earth System Research, University of
Helsinki. He completed his PhD in Physics at the University
of Helsinki in 2006. His research interests include atmospheric
aerosol particles and their role in climate change and air
quality. Contact him at tuukka.petaja@helsinki.fi

Markku Kulmala: is an Academy Professor and head of
the Institute for Atmospheric and Earth System Research,
University of Helsinki. He completed his PhD in Theoretical
Physics at the University of Helsinki in 1988. His research
interests include nanoparticle formation in the atmosphere,
biosphere-atmosphere interactions and feedbacks. Contact
him at markku.kulmala@helsinki.fi.

Pan Hui: is the Nokia Chair Professor in Data Science
and Professor of Computer Science at the University of
Helsinki. He is also the director of the HKUST-DT System
and Media Lab at the Hong Kong University of Science
and Technology. He received his PhD from the Computer
Laboratory at University of Cambridge. He is an IEEE
Fellow, an ACM Distinguished Scientist, and a member of
Academia Europaea. Contact him at pan.hui@helsinki.fi.

Sasu Tarkoma: is a full professor at the Department of
Computer Science, University of Helsinki. He completed
his PhD in Computer Science at the University of
Helsinki in 2006. His research interests include mobile
computing, Internet technologies, and AI. Contact him at
sasu.tarkoma@helsinki.fi.

https://www.atm.helsinki.fi/globalsmear/index.php/sta-tion-net-work/list-of-stations
https://www.atm.helsinki.fi/globalsmear/index.php/sta-tion-net-work/list-of-stations

