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Abstract—In a post-pandemic world, remaining vigilant and maintaining social distancing are
still crucial so societies can contain the virus and the public can avoid disproportionate health
impacts. Augmented Reality (AR) can visually assist users in understanding the distances in
social distancing. However, integrating external sensing and analysis is required for social
distancing beyond the users’ local environment. We present DistAR, an Android-based
application for social distancing leveraging AR and smart sensing using on-device analysis of
optical images and environment crowdedness from smart campus data. Our prototype is one of
the first efforts to combine AR and smart sensing technologies to create a real-time social
distancing application.

Index Terms: augmented reality, Internet of Things, social distancing, smart campus

INTRODUCTION cluded as if they are a part of the real world. Users
Augmented Reality (AR) applications create ~ may use two typical types of hardware to access
immersive user experiences by overlaying the AR augmentations, i.e., ubiquitous smartphones

physical world with device-rendered virtual anno- ~ and specialised head-mounted displays (HMDs),
tations. These virtual objects are aligned and oc- ~ such as the Microsoft HoloLens. For smartphone-
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based AR applications, the device renders virtual
augmentations on top of the video feed from
the world-facing camera. Comparatively, HMD-
based AR uses semi-transparent displays, where
augmentations are directly displayed in front of
users’ eyes [1]. Optical video streams are vital
data sources to support AR in both types of
hardware. Object detection and object recognition
help the AR system to understand the environ-
ments surrounding users. AR applications can
detect and recognise objects and events within
the vicinity of users to assist in their daily lives,
for example, in city-wide user navigation and
displaying virtual nutritional information for food
items in a supermarket.

Over the past few years, the global COVID-19
pandemic has changed how we interact with and
experience the world. For example, societies have
to live with the “New Normal” which includes
short-term solutions such as practising social dis-
tancing and long-term preventative measures such
as large-scale vaccination programs. AR could
support several of these aspects. Social distancing
limits the spread of the virus. But, the measure is
typically considered the most difficult to enforce
as people may underestimate distances and thus
be within an unsafe distance of other people. AR
applications, such as Sodar [2] and ARAroundME
[3], are developed to overlay social distancing
guidelines in real-world environments.

We present DistAR application, which sup-
ports social distancing by leveraging AR technol-
ogy and smart sensing. DistAR helps users to
make safe choices when navigating environments
by displaying distance visualisations, which helps
them reduce their potential exposure to airborne
virus particles. In addition to depth estimations
on user devices, the application renders analysed
sensing data (passive infrared measurements) as a
geographical heatmap to provide additional con-
text to support social distancing, i.e., the crowd-
edness of locations. Unlike existing AR social
distancing applications, we highlight AR along
with smart sensing for social distancing as users
may need to understand the number of people in a
wider environment and not just within their local
line of sight. We deploy the application on a smart
campus at the University of Oulu, Finland. To
the best of our knowledge, this is one of the first
contributions of leveraging AR and smart sensing

for social distancing.

RELATED WORK

Undoubtedly, COVID-19 has significantly af-
fected individuals’ lifestyles. Practical measure-
ments and technologies are needed to detect,
prevent, and mitigate adverse effects caused by
COVID-19. Conventional preventative measures,
such as face masks, good personal hygiene,
and social distancing, provide superior protection
compared to other responsive measures, such as
mobility restrictions and lockdowns [4]. Technol-
ogy can play a crucial role in supplementing and
enhancing these measures, for example, helping
people to social distance. Computing technolo-
gies, such as Al, wireless communication, the
blockchain, and computer vision, enable social
distancing [5], [6], and there has been consider-
able interest in using Al algorithms to calculate
distances between people from optical images.
Himeur et al. [7] classify the tools in existing
social distancing monitoring frameworks into “vi-
sual” and “non-visual”. Visual-based social dis-
tancing includes analysis of media streams using
hand-crafted feature-based, CNN-based, transfer
learning-based, and 3D-based algorithms. Com-
paratively, non-visual methods include analysis
of Bluetooth signals and passive WiFi sensing.
Rezaei et al. [8] demonstrate how server-deployed
deep neural networks can use typical CCTV
camera footage to accurately detect people and
the distances between them, and at the same
time, deal with challenges of occlusion, light
variations, etc. Similarly, Shah et al. [9] test
CCTV camera feed analysis using various object
detection models to calculate if users follow so-
cial distancing norms. These works highlight the
need for environmental analysis to obtain data for
social distancing. However, their work assumes
environments have both normal and bird’s eye
cameras, which may not always be available.
And these algorithms are typically computation-
ally intensive, which may not be feasible for
deployment on user devices such as smartphones.
Tanwar et al. [10] demonstrate social distancing
using the blockchain and AI, namely, trusted
information exchange between entities such as
optical cameras and Al processing layers. While
their proposed scheme enables secure real-time
social distancing, real-life implementations would
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be invasive due to the all-opt-in nature. Instead,
individuals should have the choice to perform
social distancing using their devices and appli-
cations, as seen with Bluetooth-based contact
tracing applications.

As an emerging technology, AR has signif-
icant potential for supporting social distancing
and preventing the spread of COVID-19. Some
AR social distancing smartphone applications
already exist, such as “AR AroundMe Social
Distancing” by CodingVR [3] and “Sodar” by
Google [2]. These applications overlay social
distancing guidelines on the environment, identify
where the ground is, and create rings to mark
the appropriate safe distance from others (e.g., 1-
meter, 1.5-meter, and 2-meter boundaries). While
AroundMe is a standalone application for An-
droid and Apple devices, Sodar is a browser and
web-based application. However, although both
applications support social distancing, they only
consider the view of the environment from the
optical cameras. We consider external sources
and integrate them with AR to support social
distancing. QueueSight [11] is another AR social
distancing tool which uses physical projections on
the environment to help people correctly socially
distance. While an innovative idea, this comes at a
cost and requires indoor sensors and projectors to
be installed and deployed en masse. We propose
using personal devices such as smartphones as
a more efficient and ubiquitous way to ensure
people can quickly access an AR social distancing
tool.

FIGHTING COVID-19 with AR and
SMART SENSING

Existing AR applications, such as AR
AroundMe Social Distancing [3] and Sodar [2],
typically function offline without requiring access
to the Internet or other sensors. Figure 1 presents
a social distancing vision using AR and smart
sensing. Users accessing the application can view
several layers of information in varying combina-
tions to support and ensure safe distances. In this
vision, a user’s device camera captures images,
and the environment is analysed to detect people
and distances. Then, the devices can render this
information to the user, e.g., as circles around
each person. Secondly, these areas can be colour-
coded according to risk. For example, red indi-
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cates a high possibility of walking very close to
another person, and orange and yellow represent
lower risks. In addition to estimating risk, the ap-
plication could also perform pathfinding to allow
users to navigate environments safely and avoid
contact with as many people as possible. Finally,
an AR social distancing application could provide
location overviews to aid in deciding if they are
safe to enter according to the number of people.
The system could achieve this by accessing large-
scale city-wide deployments of indoor and out-
door IoT sensors and portable wearable sensors.
The sensor data would be stored and analysed
on a central server. Then, for visualising this
information in AR, buildings or rooms could be
overlaid with a similar colour coding scheme as
the individual people risk assessment. Additional
augmentations could contain general information,
such as location names, estimated number of
people, and other relevant contextual information.

These different information layers would en-
sure users can safely navigate environments and
make informed decisions about whether to enter
locations. However, this could become confus-
ing and mentally taxing with large amounts of
information. Therefore, an AR social distancing
application should use selective layers to allow
users to view which type of distancing they prefer.
Alternatively, the application would intelligently
swap between layers according to location and
whether social distancing features are required.

Using data streams from sensors in smart
spaces is vital for supporting social distancing
because carbon dioxide (CO2) concentrations
highly correlate with aerosols containing COVID-
19. Users could use data gathered by CO2 and
passive infrared motion sensors to gain insights
into potential virus transmission risks and the
crowdedness of environments [12]. In this re-
search, we have utilised passive infrared sensors
installed in the smart environment of the Uni-
versity of Oulu to estimate area crowdedness.
On average, thousands of individuals visit the
smart campus, and during previous pandemic
lockdowns, the mobility patterns varied from typ-
ical norms. Therefore, such environments could
act as potential testbeds for developing social
distancing applications and insights for enacting
mobility policies in future pandemic scenarios.
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Figure 1. A vision of supporting social distancing during and after the COVID-19 global pandemic using AR

and smart sensing technologies.

DistAR: AN AUGMENTED REALITY
SYSTEM FOR SOCIAL DISTANCING

Design considerations

In light of needing a social distancing appli-
cation, as well as understanding the capabilities
of AR and smart sensing, we propose several key
considerations that an AR application supporting
social distancing should follow:

1) Leveraging AR and smart sensing with high
accuracy allows social distancing applica-
tions to understand the number of people
within an environment (i.e., the crowded-
ness). In this way, a person using the appli-
cation would feel confident that they could
safely and efficiently navigate an environ-
ment while performing social distancing. Es-
timating location crowdedness can be done
by analysing data collected from various
environment-based physical sensors.

2) Near real-time analysis and rendering of
relevant information is essential when con-
sidering the shifting nature of people within
environments. If the total time between data
capture, data analysis, and subsequent in-
formation rendering is too large, a user
could unknowingly walk into areas contain-
ing many airborne virus particles. Solutions
are therefore needed to reduce the overall

3)

4)

5)

system latency.

Support for heterogeneous devices ensures
an application is usable by the broadest
group of people on a large variety of devices.
In addition to user devices, device operating
systems (OSs) considerations are needed as
specific AR framework APIs may not be
available across the different OS versions.
Resource usage of the application should be
well monitored and managed. For example,
the device battery could quickly deplete if
the application processes are unchecked, the
system would then reduce the energy for de-
vice components, which could impact other
running applications and, subsequently, the
user’s quality of experience. Screen dimming
could make augmentations more challenging
to see, and environmental analysis could take
more time. The application should therefore
strike a balance between functionality and
impact on device resources.

Ease of use is essential if social distanc-
ing applications are to be used by the
broadest possible group of users who may
span various age ranges and technical com-
petencies. The application’s user interface
(UD) should be as simple as possible to
reduce mental load when traversing envi-
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ronments while simultaneously looking at
smartphones. Users could become inundated
and mentally stressed if the application con-
tains too much information.

From the stated requirements for a social
distancing application, we develop a prototype
system that addresses three of the main require-
ments, namely, 1) leveraging smart sensing and
AR with high accuracy; 2) near real-time analysis
and rendering; and 3) ease of use. We focus
on these requirements in particular as they form
the core backbone of the application, i.e., social
distancing.

To achieve smart sensing and AR with high
accuracy, we estimate crowdedness using a large
number of sensors constantly monitoring a cam-
pus. In this way, we represent the real-time cam-
pus status with a high degree of accuracy and
provide AR data visualisations. We must con-
sider several aspects for producing near real-time
analysis and rendering. One aspect is related to
processing smart sensor data. While user devices
can retrieve sensor data from a local cloud server,
continual real-time data processing and analysis
is not feasible as clients lack computation power.
A local cloud or edge server with more powerful
resources should execute these rather than on
users’ AR devices. In this way, the client can re-
trieve the cloud-analysed results and present them
in a near real-time fashion. Finally, for meeting
the requirement of ease of use, we consider the
definition of perceived ease of use where a person
considers to what degree using a system is free of
effort [13]. To achieve this, we keep the number
of Ul features and screen clutter to a minimum
to not mentally overload users and to reduce their
overall input effort. For example, our application
has a geographical map in a small screen area. In
this case, we keep the immediate user attention
on the AR experience, and we utilise a button
to swap between the transparent and coloured
opaque visualisations.

Further iterations of the application should
focus on refining and improving the application to
fulfil the other requirements, including supporting
heterogeneous devices and improving application
resource usage efficiency. For example, the An-
droid OS provides several classes for checking,
managing, and releasing memory when the device
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meets pre-defined system conditions. Addition-
ally, more memory-efficient code constructs could
help minimise application memory usage.

How users use the application in specific
environments and scenarios should also be con-
sidered. When using an AR application, there
are two potential approaches that a user can
take. The first is full immersion with the real-
world passthrough view to navigate environments.
However, this is cumbersome and could lead to
accidents, as users may not see obstacles which
appear in their way. A more realistic scenario
is a user using the AR application and paying
attention to the real world. This way, they are
more aware of their surroundings, can find a safe
and socially distanced path, and do not need to
fixate their gaze on their devices. Instead, users
can use the AR application to inform themselves
which areas are safe and which to avoid. The
application would be especially invaluable for
places with masses of people, and navigating it
quickly and safely would be difficult, for exam-
ple, busy shopping centres and public transport
hubs.

System architecture

Considering the potential of utilising AR and
smart sensing for social distancing, we develop
a prototype, DistAR, which is an AR system
that utilises data of users’ surroundings from on-
device and external sensors to infer and calcu-
late distances for users to decide on how to
social distance in real-time. If achieving real-time
analyses is not feasible, users may break their
social distancing bubble, inadvertently breathing
in virus particles.

Figure 2 provides an architecture overview,
as well as the key components of the system.
The DistAR system consists of three main com-
ponents, i.e., the (user) smartphone, an external
server, and sensors deployed on the smart cam-
pus. The application obtains camera and GPS
sensor data from the smartphone device. An on-
device distance estimator uses two methods of
estimating distances from the user. Then, with a
position localiser, distances and position are input
into a heatmap generator, which renders both the
distances calculated on-device and a crowdedness
geographical heatmap. This latter geographical
map is created on an external server that acts as
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Figure 2. The architectural design of the system containing the components for AR environment and smart

sensing analysis.

a central aggregation point for IoT sensor data
collected from the smart campus. The sensors
communicate and transmit their data to the lo-
cal cloud server using LoRaWAN. The server
performs analysis, and the user application can
retrieve the analysis from that server. In summary,
the distance estimation of the user’s surround-
ings is entirely contained on-device, and data
from external sensors and its subsequent analysis
provide supplemental environment crowdedness
information.

Implementation

DistAR is a native Android-based applica-
tion that measures and visualises distances be-
tween a user and their surroundings and contains
an interactive geographical map that allows users
to view the general occupancy or busyness of a
university campus. We develop an Android-based
application firstly because smartphones’ ubiquity
and prevalence enable quick and easy access
to the application. Secondly, modern smartphone
devices have powerful resources enabling real-
time on-device computer vision analyses. Finally,
enabling the on-device estimation of the distances
around the user requires using the Depth API
from ARCore, which is currently only supported
on Android.

Figure 3 presents the main views of

DistAR'. We intend for the application interface
to be as simple as possible to be understood by
broad groups of people, irrespective of language
or technological capability. The initial view (Fig-
ure 3(a)) when a user loads the application is of
the camera passthrough from the primary world-
facing device camera. We choose a safety distance
of 2 m as recommended by several governments
during the initial pandemic onset [14]. Regions
less than 2 m from the user are “clear” in view,
and regions larger than 2 m have a slight opacity
applied to the view. We use transparency to differ-
entiate between distances, allowing users to view
obstacles that may appear in front of them instead
of completely obscuring their view. Additionally,
there is a central reticle where depth is estimated,
and the application displays this distance in an
information box at the bottom of the screen.
Whenever the reticle moves to a region larger than
2 m, the application activates the smartphone’s
haptic motors to alert the user that those areas
would break social distancing. We chose this
reticle to move along flat surfaces as this gives
users a better understanding of distances rather
than a static and fixed circle. We also implement
this feature because while people can supposedly
keep a safe distance from others, there are times
when people are unaware or forget the required

'A video demonstration can be found here: https:/www.
youtube.com/watch?v=-VkhjLSWMDY
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Figure 3. Example views of the application while on the main thoroughfare of a university campus: (a) the
application’s camera passthrough mode with the distance returned from the central reticle, and (b) the view
when regions within 2 m are highlighted to the user as a heatmap-style visualisation. Both views contain access
to the crowded geographical heatmap map from smart sensing data.

distances. Our application would therefore remind
those users and support their social distancing.

To help users identify and recognise correct
distances, a “depth” mode is available once the
button is pressed in the application view. This
mode replaces the opaque regions that are less
than 2 m with a coloured heatmap-type visuali-
sation (Figure 3(b)). Regions closer to the user
are red, which then changes into a spectrum of
green and blue when distances are further away
from the user. We provide this function as if users
are using the application and performing other
tasks; they may not realise breaches to their social
distancing limit. By using colour and the previous
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haptic feedback, we can better alert users visually,
clearly and directly.

These features allow users to make informed
decisions on where to walk to avoid areas that
potentially contain dangerous particles. The de-
scribed depth estimation uses ARCore’s Depth
APIs to measure and visualise distances from a
user’s smartphone device [15]. A method called
localised depth samples depth values stored on
the CPU, and another method, depth sense, pro-
cesses the entire GPU-stored screen data to esti-
mate depth and distances. Both methods perform
their processing entirely on-device, negating the
need to offload images or video streams to an



external server for analysis. Users can view the
results of this analysis in near-real-time, allowing
them to make prompt and informed decisions on
where to move.

While users can understand their surroundings
through AR-based analysis, smart sensing and
analytics are crucial for detecting areas beyond
smartphone viewing range. Within our system,
we employ a sensing system and smart campus
data from the University of Oulu [16]. The current
deployment contains 410 active fixed-in-location
sensors that collect various measurements, in-
cluding CO2, light levels, noise, etc. The real-
time sensor data is sent to a storage server over
LoRaWAN using the university 5G Test Network.
The centralised data is accessed in real-time using
a RESTful API. We use this API to retrieve
the sensor data, pre-process to remove missing
values, and select the subset of measurements
that indicate crowdedness within an environment,
i.e., passive infrared (PIR). Based on this data,
we generate a geographical crowdedness heatmap
of the entire university campus. The map is
produced on the same cloud server and loaded
into the AR application’s information box.

Evaluation

We look towards the design considerations
and the three main requirements we defined to
evaluate our system. We evaluate using a OnePlus
9 Pro smartphone for the user client and a PC
(Intel Core 17-9700K CPU, 32 GB RAM, and an
NVIDIA GeForce RTX 2080 with Max-Q Design
GPU) as a local private cloud.

The first evaluation pertains to smart sensing
and AR with high accuracy. We estimate crowd-
edness using the PIR sensor measurements. This
data is part of the continuous data streams from
each campus-deployed sensor. The implementa-
tion of the smart environment contains several
methods to ensure that the PIR values and the
other data retrieved are accurate. As the broker
collects the sensor measurements and the cen-
tralised server stores the sensor data, a custom
drift detection algorithm is applied to detect er-
roneous values. If the data is drifting, the system
attempts to correct the values. However, if the
deviancy is too large, this is then flagged to
a system operator, who proceeds to debug the
sensor on-location manually. In this way, we can

ensure that the subsequent analysis for estimating
crowdedness is accurate and the values reflect the
actual nature of the environment.

The second evaluation relates to near real-
time analysis and rendering. We look at the
end-to-end latency and separate the latency for
different system components. We group these
individual components into client and server. The
client analyses the environment in real-time and
on-device to generate the heatmap-style visuali-
sation and to calculate the central reticle distance.
We obtain the application’s latency in performing
these calculations by timing the call of the Depth
API method after receiving a new frame until
the on-screen visualisation rendering completes.
Using the depth sense method to generate the
heatmap-style visualisation takes an average time
of 0.37 ms while using localised depth takes a
time of 0.05 ms. Both latency values are small,
highlighting the real-time analysis and rendering
of the depth visualisations of the environment.
Comparatively, the server takes an average time
of 3.90 s to generate the geographical heatmap
of the smart university campus, which is a poten-
tially significant value as the limit of a user’s flow
of thought is approximately 1 s [17]. However,
client-server communication utilises the univer-
sity’s 5G network, so the average latency between
the smartphone and the local cloud averages 27.1
ms when using 5G. The large latency attributed
to the generation of the geographical heatmap
is because our current cloud scripts generate the
map for the entire university campus. Reducing
this total latency would be possible by shrinking
the map region of concern and providing the cur-
rent user coordinates to move and generate more
valuable maps on-the-fly adaptively. In general,
we find that the AR system component performs
in near real-time and with further improvements,
so can the sensor-based analysis.

The last evaluation pertains to ease of use,
a highly subjective metric to evaluate. We invite
five users (age: & = 25.4 years, u = 4.83 years)
to use the application to navigate a busy thorough-
fare at the University of Oulu. The participants
included four male master’s students in computer
science and one female master’s student in learn-
ing, education, and technology. After using our
application, we asked the participants to complete
a short usability survey and gathered their general
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Table 1. Several example questions and statistics from
our usability survey after 5 users tried our AR social

distancing application.

Question Average Std. Dev.
1) I thought the system was | 3.80 1.10
easy to use.
2) I think that I would need | 2.00 1.22
the support of a technical
person to be able to use this
system.

3) I imagine most people | 4.00 0.71
would learn to use this sys-
tem very quickly.

4) 1 liked the graphics and | 3.20 1.30
images of DistAR.
5) The layout of DistAR was | 2.60 1.14
visually pleasing.
6) 1 would like to use this | 2.80 1.48
system frequently.

opinions and feedback. Table 1 lists several ques-
tions from our survey and their corresponding
average score. Users selected an integer value for
each question from 1 to 5, where 1 relates to
“Strongly Disagree” and 5 to “Strongly Agree”.
We see from questions 1) through 3) that users
found the system easy to use, and when given to
other non-technical users, the application would
be easy to pick up and use. One participant com-
mented how the application is “straightforward”.
However, from questions 4) and 5), the partic-
ipants indicate that the application’s UI could
be further refined and developed. For example,
after being shown the vision in Figure 1, several
participants wished there could be a more similar
interface with numerical values of crowdedness.
Finally, from question 6), the participants did not
see the significance of social distancing, attributed
to their young-minded mentality of the COVID-
19 pandemic being over. However, they did note
that DistAR would be helpful for those who
may still want and medically need to socially
distance. Furthermore, they suggested that the
application vision would help them to evaluate
whether to enter areas which may not seem busy
from the outside. This small study has shown us
which potential parts of our system need further
improvement, and we recognise the need to fur-
ther explore with a larger number of participants
with diverse backgrounds.
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DISCUSSION

This work enables social distancing in vari-
ous environments by leveraging AR and smart
sensing. Using both is important when consider-
ing current or future pandemic scenarios where
maintaining proper distances between people is
necessary to ensure the general public’s health
and the proper containment of viruses. By utilis-
ing ubiquitously available devices such as smart-
phones and considering the increasing prevalence
of public and private smart environments and
infrastructures, applications to support similar
scenarios can be quickly deployed and accessed
by all stakeholders in society.

However, user adoption of social distancing
applications could be further improved by consid-
ering web-based AR applications. These browser
experiences use the WebXR Device API, an
API that is undergoing standardisation efforts to
bring the capabilities of traditional installation-
based AR and virtual reality applications to web
browsers [18]. Several benefits arise from us-
ing WebXR, for example, accessing applications
without needing to install from a traditional “app”
store. Other benefits include pushing updates on
the fly to all users and creating compatible appli-
cations across different devices (albeit with the
caveat of only supporting WebXR API-supported
devices). Replicating our application using We-
bXR is only possible on Android as the WebXR
Depth Sense API is yet to be formally standard-
ised and is still undergoing active development.
This API would allow access to the same depth
information as in the native-deployed ARCore
Depth API. Nonetheless, the WebXR working
group has published one initial version of the
Depth Sense API and is currently being tested
for a future release for Chrome on Android [19].
Further iterations of DistARcould utilise this
API to provide better compatibility with a more
significant number of devices. In addition, further
considerations should also be made of the user
hardware itself. For example, our implementation
uses an Android OnePlus 9 Pro smartphone which
features a powerful device chip for processing
capabilities, allowing our application to perform
analyses on both the CPU and GPU. Another
consideration for broader adoption is whether the
same performance is achievable on other, less
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powerful devices.

We have developed DistAR, a proof-of-
concept social distancing application. To under-
stand the application’s usability, we will conduct
additional extensive user studies to obtain more
subjective opinions of how the application per-
forms and is perceived by a broader group, in-
cluding more varied ages and technological capa-
bilities. In addition, one essential requirement of
the application is to provide insights in near real-
time. Therefore, the application should be low
latency, which requires an extensive evaluation
of the computational throughput on the cloud
and measuring the latency of insights arriving
at the user application. Also, DistARis capa-
ble of performing localisation of the end-user.
However, one key consideration is that the ap-
plication should be location agnostic, i.e., usable
in indoor and outdoor environments. Considering
indoors, localisation and positioning techniques
within these areas still require improvement to
be truly precise and accurate. For this purpose,
we will utilise Bluetooth access points installed
on the smart campus to enhance indoor posit-
ing when using the social distancing application.
With improved positioning, we could refine the
AR visualisations to be more exact, e.g., over-
laying visualisations on people and the entire
environment. In addition to better positioning, the
application and system would require an object
detection component to recognise people and
where they are in the environment.

We enrich our AR application with the real-
time crowdedness context retrieved from sensors.
However, other considerations could be possible.
Firstly, we solely used the PIR metric for rep-
resenting crowdedness. Instead of just this data,
the results could be further reinforced with other
calculated metrics, such as CO2 concentrations
and noise levels, to estimate crowdedness. We
are also exploring the best ways to render this
information, e.g., showing a full heatmap or con-
centrating on the region where the user is. Data
rendering is essential as the information should be
as easy to consume as possible. Another aspect
to consider is how we alert users to breaches of
their social distancing limits. The current iteration
of our application uses the deployment device’s
haptic motor to alert users. Although, if a user
is wearing gloves or distracted in other matters,

there is a possibility that they do not perceive the
vibrations. One way to overcome this would be to
provide haptic notifications on a separate device,
such as a wearable armband. Users would then
be more aware of if there are incursions on their
social distancing bubble and adjust accordingly.
While this would require an additional cost to
users, this inclusion would greatly benefit those
who are visually impaired or have other disabili-
ties.

Future Directions

Cross-platform AR applications: Our orig-
inal native-device application is developed and
deployed for Android smartphones. Large-scale
adoption of social distancing applications by the
general public requires the application to be avail-
able for as many devices as possible, such as
Apple’s iPhone. This cross-platform access would
be significantly easier with development using the
aforementioned WebXR API. However, there is
still a lack of general support for the API on iOS.

Additionally, AR is not limited to smart-
phones; head-mounted displays (HMD) are im-
portant devices for immersive AR experiences,
for example, Microsoft’s HoloLens 2. Using
HMD-based applications would allow users to
free up their hands instead of holding up a smart-
phone to analyse their surroundings constantly.
In addition, users could also be constantly aware
of the distances to other people around them.
One example could be a person in a supermarket
purchasing groceries. While with a smartphone-
based AR social distancing application, navigat-
ing a store around people would be a cumber-
some experience if the user is pushing a trolley,
for example. The user would constantly need
to put down their phone to either push their
trolley or pick up items. An AR social distancing
application for HMDs would certainly alleviate
this issue. However, one limitation to achieving
this is the support and performance of distance
estimation algorithms. For example, the Depth
API utilised in our application to estimate depth
and distances is not usable on HoloLens 2 as
ARCore is not natively supported. Instead, other
algorithms or computation offloading of device
data is required to achieve the same experience
but potentially to the detriment of user experi-
ence. There are other limitations to HMD-based
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applications, such as the current costs of HMDs
remaining relatively high and their functionality
outdoors is not a stable experience yet. However,
as there are more generations of HMDs, we
expect their cost to decrease and their outdoor
support to improve to allow users to use HMDs
in all environments.

In a related fashion, other non-personal AR
devices could potentially be social distancing
tools, such as interactive public displays [20].
However, in practical deployments, these AR dis-
plays would be more suitable for near-stationary
scenarios, such as queuing in public places. For
example, suppose a person is walking to a des-
tination at pace. In that case, there is a possibil-
ity that they do not view the social distancing
information at all as the visualisation may be
cumbersome to understand and challenging to
plot when relating to their current surrounding
environment. AR would be more suitable as per-
sonalised information would be available.

QoE and user acceptance: Ensuring a good
user experience is essential for any AR appli-
cation, regardless of the use case. Users expect
augmentations or holograms to be rendered di-
rectly on relevant objects promptly, ensuring that
the information matches the environment before
becoming too stale and irrelevant. Several ap-
proaches can potentially improve the user quality
of experience (QoE).

First, the device resource usage must be moni-
tored and adaptive when needs change. AR appli-
cations rely heavily on the user screen, the device
CPU and GPU, and onboard sensors, such as the
camera, GPS, and Bluetooth. These are expenses
on the already finite energy resource of device
battery life. Left unchecked, users might find
their devices very quickly depleted, very hot from
extensive energy usage, and their phone’s overall
performance throttled on an OS level to conserve
the remaining battery. All of which would lead to
a worsened user experience. Therefore, the appli-
cation should optimise between software features
and hardware utilisation to provide the best trade-
off for users.

Other external factors could also be consid-
ered to improve the overall user-perceived QoE.
As part of our system, DistARrequires access-
ing an external server to aggregate and analyse
sensor data for the beyond-user awareness of the
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crowdedness of locations. Naturally, this compo-
nent could be improved to reduce the latency
required to communicate and retrieve the sensor
analytics results. Firstly, an edge server is more
beneficial for sensor data analysis than placing
the calculations on a remote cloud server. Using
an edge server would reduce the communica-
tion latency from user devices to the server and
provide benefits such as improved security and
privacy as the data is closer to end users. Sec-
ondly, leveraging large-scale sensor deployments
for AR applications, like in a campus area or
at an urban scale, poses challenges for real-time
analysis and good user experiences, as overlaying
real-time contextual information could suffer due
to network delays and resource demands for large
data rendering. For such scenarios, leveraging
5G networks with edge computing infrastructure
could enable smoother experiences and provide
much faster data transfer rates than 4G/LTE and
WiFi communication links.

Analysis of smart sensing environments:
The current implementation of the smart campus
sensing system performs drift detection to correct
erroneous measurements which may appear in the
collected data. In this way, we ensure that the
estimations of crowdedness are accurate to pro-
duce a viable social distancing system. However,
predictive modelling is also needed where estima-
tions of crowdedness would allow users to plan
whether to go through an area. By implementing
this forecasting, the vision of Figure 1 would be
better achievable as pathfinding algorithms could
function based on historical data and predictive
estimations.

Synchronisation of AR and sensing sys-
tems: Context-aware augmented interactions re-
quire sensing capacities on large scales. AR
and sensing systems are distinct network appli-
cations with specific constraints and deadlines.
Synchronising these two technologies to provide
updated information promptly presents a com-
plex scheduling challenge. Namely, ensuring that
servers can succinctly analyse the data from sen-
sors to provide the most relevant information to
be rendered in AR before the information be-
comes stale and irrelevant. Similar to the above-
described methods for improving QoE, 5G and
edge computing technologies are two potential
solutions for AR sensor synchronisation because
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they will reduce the communication time be-
tween clients and servers. Therefore, the IoT
data streams and AR rendering engines would
be given additional time to ensure that both can
synchronise succinctly.

Another consideration is an AR application’s
ability to traverse different environments and
maintain the same functionality and experience.
Massively deployed sensing is still an ongoing
process, and not all environments contain the
sensors required to supplement the AR-based dis-
tance calculations. However, once those sensors
are available, the data would most likely be stored
on a different server (i.e., on-premises). The ques-
tion then arises of how the application can access
that data. One potential solution would be to
introduce a standardised system and API that the
application can easily interface to, for example,
initially contacting the cloud to discover which
local edge servers are available to communicate
to, or using Bluetooth signals to determine the
local edge servers. In this way, the application
could be useful not just in public spaces such
as universities, but also within private companies
and other similar spaces.

CONCLUSIONS

The COVID-19 pandemic has impacted our
daily lives and societies, and adapting to the post-
pandemic new normal is of the utmost impor-
tance. As part of this, specific measures should
be taken by those more vulnerable and susceptible
to the virus, for example, conventional prevention
measures such as wearing face masks or social
distancing. However, constantly adhering to these
measures may not always be easy. Instead, users
can use technology to support their maintenance
of these measures. Maintaining social distancing
is one measure that can be supported using aug-
mented reality and smart sensing technologies. In
this work, we have demonstrated one of the first
efforts at combining both technologies for social
distancing in our Android application, DistAR.
We utilised on-device depth estimation and ex-
ternally analysed sensor data for crowdedness to
allow users to make informed decisions on social
distancing.
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